如圖,△ABC中,點D在AC上,且AB=AD,∠ABC=∠C+30°,則∠CBD=    度.
【答案】分析:等腰三角形ABD中,∠ABD=∠ADB=∠C+∠DBC,將上式代入∠ABC=∠C+30°中,即可求得∠CBD的度數(shù).
解答:解:∵AB=AD
∴∠ABD=∠ADB
∵∠ADB=∠C+∠CBD
∴∠ABD=∠C+∠CBD
∴∠ABC=∠ABD+∠CBD=2∠CBD+∠C
已知∠ABC=∠C+30°
∴2∠CBD+∠C=∠C+30°
即∠CBD=15°.
故填15.
點評:本題主要考查了等腰三角形的性質(zhì)以及三角形外角的性質(zhì).找著角之間的關系式正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,△ABC中,點D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對相似三角形?請選擇一對進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D、E分別為AB、AC的中點,連接DE,線段BE、CD相交于點O,若OD=2,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D為BC上一點,且AB=AC=CD,則圖中∠1和∠2的關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D為AB邊上的一點,點F為BC延長線上一點,DF交AC于點E.下列結(jié)論中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D在BC上,點E在AB上,BD=BE,下列四個條件中,不能使△ADB≌△CEB的條件是(  )

查看答案和解析>>

同步練習冊答案