如圖所示,在直線MN兩旁各有一點(diǎn)A、B,且A、B到MN的距離不等,請(qǐng)你在MN上求作一點(diǎn)P,使PA-PB最大,并說(shuō)明理由.

答案:
解析:

  作法:(1)作點(diǎn)B關(guān)于直線MN的對(duì)稱(chēng)點(diǎn)B'.

  (2)連結(jié)AB'并延長(zhǎng)交MN于點(diǎn)P,則點(diǎn)P即為所求.

  理由:在MN上另任取一點(diǎn)P',連結(jié)P'A、BP'、PB(如圖所示)

  ∵B、B'關(guān)于MN對(duì)稱(chēng),P、P'在MN上

  

  在△AB'P'中,

  

  最大


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,某產(chǎn)品標(biāo)志的截面圖形由一個(gè)等腰梯形和拋物線的一部分組成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.對(duì)于拋物線部分,其頂點(diǎn)為CD的中點(diǎn)O,且過(guò)A、B兩點(diǎn),開(kāi)口終端的連線MN平行且等于DC.
(1)如圖①所示,在以點(diǎn)O為原點(diǎn),直線OC為x軸的坐標(biāo)系內(nèi),點(diǎn)C的坐標(biāo)為(15,0),試求A、B兩點(diǎn)的坐標(biāo);
(2)求標(biāo)志的高度(即標(biāo)志的最高點(diǎn)到梯形下底所在直線的距離);
(3)現(xiàn)根據(jù)實(shí)際情況,需在標(biāo)志截面圖形的梯形部分的外圍均勻鍍上一層厚度為3c精英家教網(wǎng)m的保護(hù)膜,如圖②,請(qǐng)?jiān)趫D中補(bǔ)充完整鍍膜部分的示意圖,并求出鍍膜的外圍周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在一筆直的公路MN的同一旁有兩個(gè)新開(kāi)發(fā)區(qū)A,B,已知AB=10千米精英家教網(wǎng),直線AB與公路MN的夾角∠AON=30°,新開(kāi)發(fā)區(qū)B到公路MN的距離BC=3千米.
(1)新開(kāi)發(fā)區(qū)A到公路MN的距離為
 
;
(2)現(xiàn)要在MN上某點(diǎn)P處向新開(kāi)發(fā)區(qū)A,B修兩條公路PA,PB,使點(diǎn)P到新開(kāi)發(fā)區(qū)A,B的距離之和最短.此時(shí)PA+PB=
 
(千米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中有點(diǎn)A(-1,0),點(diǎn)B(4,0),以AB為直徑的半圓交y軸正半軸于點(diǎn)精英家教網(wǎng)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點(diǎn)D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設(shè)點(diǎn)M是拋物線上任意一點(diǎn),過(guò)點(diǎn)M作MN⊥y軸,交y軸于點(diǎn)N.若在線段AB上有且只有一點(diǎn)P,使∠MPN為直角,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在同一條直線上,連接BE,CD,M,N分別為BE,CD的中點(diǎn),連接AM,AN,MN.
(1)求證:BE=CD;
(2)求證:△AMN是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案