已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設點F運動的時間為t秒.當t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
(1)設△EGA的面積為S,寫出S與t的函數(shù)關系式;
(2)當t為何值時,AB⊥GH.
分析:(1)由GA∥BC,可得△ADG∽△BDF,然后由相似三角形的對應邊成比例,易得
AG
BF
=
AD
DB
,繼而可求得AG的長,然后過點E作EK⊥AG于點K,由含30°角的直角三角形的性質(zhì),可求得EK的長,繼而求得答案;
(2)首先連接DE,易得△ADE是等邊三角形,然后若AB⊥HE,則AO=OD,∠AEO=∠OED,易得△AGE是等腰三角形,繼而求得答案.
解答:解:(1)∵GA∥BC,
∴∠GAD=∠B,∠AGD=∠BFD,
∴△ADG∽△BDF,
AG
BF
=
AD
DB

∵AB=6,AD=2,
∴DB=4,
∵BF=t,
AG
t
=
2
4
,
∴AG=
1
2
t,
過點E作EK⊥AG于點K,
∵∠BCA=60°,
∴∠CAK=60°,
∴∠AEK=30°,
∵AE=2,
∴AK=1,EK=
3

∴S=
1
2
AG•EK=
1
2
×
1
2
3
=
3
4
t;

(2)連接DE,
∵AD=AE,
∵∠BAC=60°,
∴△ADE是等邊三角形,
若AB⊥HE,則AO=OD,∠AEO=∠OED,
∵GA∥DE,
∴∠AGE=∠GED,
∴∠AGE=∠AEG,
∴AG=AE=2,
1
2
t=2,
解得:t=4,
∴當t=4時,AB⊥GH.
點評:此題考查了相似三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結合與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

學習《圖形的相似》后,我們可以借助探索兩個直角三角形全等的條件所獲得經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.
(1)“對與兩個直角三角形,滿足一邊一銳角對應相等,或兩直角邊對應相等,兩個直角三角形全等”.精英家教網(wǎng)類似地你可以得到:“滿足
 
,或
 
,兩個直角三角形相似”.
(2)“滿足斜邊和一條直角邊對應相等的兩個直角三角形全等”,類似地你可以得到“滿足
 
的兩個直角三角形相似”.
請結合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,
 

試說明Rt△ABC∽Rt△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

學習《圖形的相似》后,我們可以探索兩個直角三角形全等的條件所獲得的經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.

(1)“對于兩個直角三角形,滿足一邊一銳角對應相等,或兩直角邊對應相等,兩個直角三角形全等”,類似地,你可以得到“滿足_____,或_____,兩個直角三角形相似”;
(2)“滿足斜邊和一條直角邊對應相等的兩個直角三角形全等”,類似地,你可以得到滿足_____兩個直角三角形相似”.請結合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,_____.試說明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(江蘇南京) 題型:解答題

學習《圖形的相似》后,我們可以探索兩個直角三角形全等的條件所獲得的經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.

(1)“對于兩個直角三角形,滿足一邊一銳角對應相等,或兩直角邊對應相等,兩個直角三角形全等”,類似地,你可以得到“滿足_____,或_____,兩個直角三角形相似”;
(2)“滿足斜邊和一條直角邊對應相等的兩個直角三角形全等”,類似地,你可以得到滿足_____兩個直角三角形相似”.請結合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,_____.試說明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市考數(shù)學一模試卷 題型:選擇題

已知:如圖,在等邊三角形ABC中,M、N分別是AB、AC的中點,D是MN上任意一點,CD、BD的延長線分別與AB、AC交于F、E,若 ,則等邊三角

 

形ABC的邊長為

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在等邊三角形ABC中,M、N分別是AB、AC的中點,D是MN上任意一點,CD、BD的延長線分別與AB、AC交于F、E,若 ,則等邊三角

 

形ABC的邊長為

 

A.         B.              C.              D.1

 

 

查看答案和解析>>

同步練習冊答案