【題目】如圖,已知∠AOB=90°,點(diǎn)A繞點(diǎn)O順時針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A1落在射線OB上,點(diǎn)A繞點(diǎn)A1順時針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A2落在射線OB上,點(diǎn)A繞點(diǎn)A2順時針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A3落在射線OB上,…,連接AA1 , AA2 , AA3…,依此作法,則∠AAnAn+1等于度.(用含n的代數(shù)式表示,n為正整數(shù))
【答案】(180﹣ )
【解析】解:∵點(diǎn)A繞點(diǎn)O順時針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A1落在射線OB上,
∴OA=OA1 ,
∴∠AA1O= ,
∵點(diǎn)A繞點(diǎn)A1順時針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A2落在射線OB上,
∴A1A=A1A2 ,
∴∠AA2A1= ∠AA1O= ,
∵點(diǎn)A繞點(diǎn)A2順時針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A3落在射線OB上,
∴A2A=A2A3 ,
∴∠AA3A2= ∠AA2A1= ,
∴∠AAnAn﹣1= ,
∴∠AAnAn+1=180°﹣ .
故答案為:180﹣ .
根據(jù)旋轉(zhuǎn)的性質(zhì)得OA=OA1 , 則根據(jù)等腰三角形的性質(zhì)得∠AA1O= ,同理得到A1A=A1A2 , 根據(jù)等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AA2A1= ∠AA1O= ,同樣得到∠AA3A2= ,于是可推廣得到∠AAnAn﹣1= ,然后利用鄰補(bǔ)角的定義得到∠AAnAn+1=180°﹣ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關(guān)系對應(yīng)的圖像線段AB表示甲出發(fā)不足2小時因故停車檢修),請根據(jù)圖像所提供的信息,解決如下問題:
(1)求乙車所行路程y與時間x的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分別為E、F.
(1)求證:BE=BF;
(2)當(dāng)菱形ABCD的對角線AC=8,BD=6時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個動點(diǎn),過點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E,F(xiàn).設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點(diǎn)O 以每秒8°的速度順時針方向旋轉(zhuǎn)t 秒.
(1)如圖2,當(dāng)t= 秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;
(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);
(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點(diǎn)O 以每秒2°的速度順時針旋轉(zhuǎn),當(dāng)OM 旋轉(zhuǎn)至射線OD 上時,兩個三角板同時停止運(yùn)動.
①當(dāng)t= 秒時,∠MOC=15°;
②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AD=6,A(1,0), B(9,0),直線y=kx+b經(jīng)過B、D兩點(diǎn).
(1)求直線y=kx+b的表達(dá)式;
(2)將直線y=kx+b平移,當(dāng)它與矩形沒有公共點(diǎn)時,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖:直線AB解析式為,其圖像與坐標(biāo)軸x,y軸分別相交于A、B兩點(diǎn),點(diǎn)P在線段AB上由A向B點(diǎn)以每秒2個單位運(yùn)動,點(diǎn)C在線段OB上由O向B點(diǎn)以每秒1個單位運(yùn)動(其中一點(diǎn)先到達(dá)終點(diǎn)則都停止運(yùn)動),過點(diǎn)P與x軸垂直的直線交直線AO于點(diǎn)Q. 設(shè)運(yùn)動的時間為t秒(t≥0).
(1)直接寫出:A、B兩點(diǎn)的坐標(biāo)A( ),B( ).
∠BAO=______________度;
(2)用含t的代數(shù)式分別表示:CB= ,PQ= ;
(3)是否存在t的值,使四邊形PBCQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;
(4)(3分)是否存在t的值,使四邊形PBCQ為菱形?若存在,求出t的值;若不存在,說明理由,
并探究如何改變點(diǎn)C的速度(勻速運(yùn)動),使四邊形PBCQ在某一時刻為菱形,求點(diǎn)C的速度和時
間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天數(shù)學(xué)課上,老師講了整式的加減.放學(xué)后,小明回到家拿出課堂筆記,認(rèn)真地復(fù)習(xí)老師課堂上講的內(nèi)容,他突然發(fā)現(xiàn)一道題:
(﹣x2+3yx﹣y2)﹣(﹣x2+■xy﹣y2)=﹣x2﹣xy+■y2,其中兩處橫線地方的數(shù)字被鋼筆水弄污了,那么這兩處地方的數(shù)字之積應(yīng)是__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com