分解因式
(1)8a3b2-12ab3c
(2)-3ma3+6ma2-12ma
(3)2(x-y)2-x(x-y)
(4)3ax2-6axy+3ay2
(5)p2-5p-36
(6)x5-x3
(7)(x-1)(x-2)-6
(8)a2-2ab+b2-c2
解:(1)8a3b2-12ab3c=4ab2(2a2-3bc);
(2)-3ma3+6ma2-12ma=-3ma(a2-2a+4)=-3ma(a-2)2;
(3)2(x-y)2-x(x-y)=(x-y)(2x-2y-x)=(x-y)(x-2y);
(4)3ax2-6axy+3ay2=3a(x2-2xy+y2)=3a(x-y)2;
(5)p2-5p-36=(p-9)(p+4);
(6)x5-x3=x3(x2-1)=x3(x+1)(x-1);
(7)(x-1)(x-2)-6=x2-3x+2-6=(x-4)(x+1);
(8)a2-2ab+b2-c2=(a-b)2-c2=(a-b+c)(a-b-c).
分析:(1)直接提取公因式4ab2即可;
(2)(4)(6)提公因式后,再用公式法分解;
(3)直接提取公因式x-y即可;
(5)直接用十字相乘法因式分解;
(7)先按多項式乘以多項式計算,再用十字相乘法因式分解;
(8)按分組分解法分組,再按公式法分解因式.
點評:本題考查了十字相乘法、提公因式法、分組分解法分解因式,要注意觀察,嘗試,并體會它實質(zhì)是二項式乘法的逆過程,本題需要進(jìn)行多次因式分解,分解因式一定要徹底.