如圖,⊙O是△ABC的外接圓,∠OBC=20°,則∠A=________°.

70
分析:首先根據(jù)等腰三角形的性質得出∠OCB=∠OBC=20°,再根據(jù)圓周角定理,在同圓與等圓中同弧或等弧所對圓周角是圓心角的一半,即可得出答案.
解答:∵⊙O是△ABC的外接圓,∠OBC=20°,OB=CO,
∴∠OCB=∠OBC=20°,
∴∠BOC=180°-20°-20°=140°,
∴∠A=70°.
故答案為:70°.
點評:此題主要考查了圓周角定理的性質以及等腰三角形的性質與三角形內(nèi)角和定理等知識,熟練地應用圓周角定理是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點D、交⊙O于點E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習冊答案