精英家教網(wǎng)如圖,D、E分別是⊙O半徑OA、OB上的點(diǎn),CD⊥OA、CE⊥OB、CD=CE,則弧AC的長(zhǎng)與弧CB的長(zhǎng)的大小關(guān)系是(  )
A、
AC
=
BC
B、
AC
BC
C、
AC
BC
D、不能確定
分析:根據(jù)直角三角形的判定定理HL,可得出△COD≌△C0E,則∠COD=∠COE,再根據(jù)在同圓中,相等的圓心角所對(duì)的弧也相等得出結(jié)論.
解答:解:∵CD⊥OA、CE⊥OB,
∴∠CDO=∠CEO=90°,
∵CD=CE,CO=CO,
∴△COD≌△C0E,
∴∠COD=∠COE,
AC
=
BC
,
故選A.
點(diǎn)評(píng):本題考查了圓心角、弧、弦之間的關(guān)系,以及全等三角形的判定和性質(zhì),是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,E、F分別是等腰△ABC的腰AB、AC的中點(diǎn).用尺規(guī)在BC邊上求作一點(diǎn)M,使四邊形AEMF為菱形.
(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:AB、AC分別是⊙O的直徑和弦,D為弧AC上一點(diǎn),DE⊥AB于點(diǎn)H,交⊙O于點(diǎn)E,交AC于點(diǎn)F.P為ED延長(zhǎng)線上一點(diǎn),連PC.
(1)若PC與⊙O相切,判斷△PCF的形狀,并證明.
(2)若D為弧AC的中點(diǎn),且
BC
AB
=
3
5
,DH=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB和AC分別是⊙O的直徑和弦,OD⊥AC于D點(diǎn),若OA=4,∠A=30°,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E、F分別是正方形ABCD邊BC、AD上的點(diǎn),且BE=DF
求證:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

桌上放著一個(gè)圓柱和一個(gè)長(zhǎng)方體,如圖(1),請(qǐng)說出下列三幅圖(如圖(2))分別是從哪個(gè)方向看到的.

查看答案和解析>>

同步練習(xí)冊(cè)答案