x2-(  )x+=(x-  )2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書 九年級(jí)數(shù)學(xué) 上 (江蘇版課標(biāo)本) 江蘇版課標(biāo)本 題型:044

矩形倉(cāng)庫的多種設(shè)計(jì)方案

  實(shí)踐與探索課上,老師布置了這樣一道題:

  有100米長(zhǎng)的籬笆材料,想圍成一矩形露天倉(cāng)庫,要求面積不小于600平方米,在場(chǎng)地的北面有一堵長(zhǎng)50米的舊墻.有人用這個(gè)籬笆圍一個(gè)長(zhǎng)40米,寬10米的矩形倉(cāng)庫,但面積只有400平方米,不合要求.現(xiàn)在請(qǐng)你設(shè)計(jì)矩形倉(cāng)庫的長(zhǎng)和寬,使它符合要求.

  經(jīng)過同學(xué)們一天的實(shí)踐與思考,老師收到了如下幾種設(shè)計(jì)方案:

  (1)如果設(shè)矩形的寬為x米,則用于長(zhǎng)的籬笆為=(50-x)米,這時(shí)面積S=x(50-x).

  當(dāng)S=600時(shí),由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  檢驗(yàn)后知x=20符合要求.

  (2)根據(jù)在周長(zhǎng)相等的條件下,正方形面積大于矩形面積,所以設(shè)計(jì)成正方形倉(cāng)庫,它的邊長(zhǎng)為x米,則4x=100,x=25.這時(shí)面積達(dá)到625米,當(dāng)然符合要求.

  (3)如果利用場(chǎng)地北面的那堵舊墻,取矩形的長(zhǎng)與舊墻平行,設(shè)與墻垂直的矩形一邊長(zhǎng)為x米,則另一邊為100-2x,如圖.

  因?yàn)榕f墻長(zhǎng)50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根據(jù)x≥25,舍去x2=25-

  所以,利用舊墻,取矩形垂直于舊墻一邊長(zhǎng)為25+米(約43米),另一邊長(zhǎng)約14米,符合要求.

  (4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時(shí),用100米籬笆圍成矩形倉(cāng)庫,則矩形另一邊長(zhǎng)為25米,這時(shí)矩形面積為S=50×25=1250(平方米).即面積可達(dá)1250平方米,符合設(shè)計(jì)要求.

還可以有其他一些符合要求的設(shè)計(jì)方案.請(qǐng)你試試看.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測(cè)叢書 八年級(jí)數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點(diǎn)M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=,故ab=k,所以S=|k|(如圖(1)).

  這就是說,過雙曲線上任意一點(diǎn)作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會(huì)給解題帶來方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過三點(diǎn)分別向x軸引垂線,交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=,

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個(gè)反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個(gè)反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請(qǐng)你解答下題:

  如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).

(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);

(2)“若AB的長(zhǎng)為2,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡(jiǎn)述步驟①的解題依據(jù),步驟②的解題方法.

  解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(  ,0).

  ∵拋物線的對(duì)稱性及AB=2,

  ∴AD=BD=|xA-xD|=

  ∵點(diǎn)A(xA,0)在拋物線y=(x-h(huán))2+k上,

  ∴0=(xA-h(huán))2+k. 、

  ∵h(yuǎn)=xC=xD,將|xA-xD|=代入上式,得到關(guān)于m的方程

  0=()2+(  ) 、

(3)將(2)中的條件“AB的長(zhǎng)為2”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書九年級(jí)數(shù)學(xué)上 題型:022

有一根為1的一元二次方程

  對(duì)于關(guān)于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的兩個(gè)根分別為x1=1,x2.說明如下:

  由于a+b+c=0,則c=-a-b

  將c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

請(qǐng)利用上面推導(dǎo)出來的結(jié)論,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)請(qǐng)你寫出3個(gè)一元二次方程,使它們都有一個(gè)根是1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請(qǐng)給出一元二次方程x2-4x+   =0的一個(gè)常數(shù)項(xiàng),使這個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊(cè)答案