精英家教網 > 初中數學 > 題目詳情

(本小題滿分10分)
(1)如果△ABC的面積是S,E是BC的中點,連接AE(如圖1),則△AEC的面積是           
(2)在△ABC的外部作△ACD,F是AD的中點,連接CF(如圖2),若四邊形ABCD的面積是S,則四邊形AECF的面積是            ;
(3)若任意四邊形ABCD的面積是S,E、F分別是一組對邊AB、CD的中點,連接AF,CE(如圖3),則四邊形AECF的面積是            ;

圖1             圖2                圖3
拓展與應用
(1)若八邊形ABCDEFGH的面積是100,K、M、N、O、P、Q分別是AB、BC、CD、EF、FG、GH的中點,連接KH、MG、NF、OD、PC、QB、(如圖4),則圖中陰影部分的面積是            
(2)四邊形ABCD的面積是100,E、F分別是一組對邊AB、CD上的點,且AE=AB,
CF=CD,連接AF,CE(如圖5),則四邊形AECF的面積是            
(3)(如圖6)ABCD的面積是2,AB=a,BC=b,點E從點A出發(fā)沿AB以每秒v個單位長的速度向點B運動,點F從點B出發(fā)沿BC以每秒個單位長的速度向點C運動.E、F分別從點A、B同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.請問四邊形DEBF的面積的值是否隨著時間t的變化而變化?若不變,請寫出這個值         ,并寫出理由;若變化,說明是怎樣變化的.

圖4                  圖5                     圖6

(1)  (2)    (3)(1分+1分+1分)
拓展應用(1)50 (2)(1分+1分)
(3)四邊形DEBF的面積的值不隨時間t的變化而變化;1;(1分+1分)
證明:∵AE=vt,AB=a∴,∵BF=,BC="b" ∴8分
∵△AED與△ABD同底,∴,∵△DBF與△DBC同底,∴
=,∵=,∴=,-----------------------9分
-----------------------------10分

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(本小題滿分10分)一個不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個,黃球有1個.若從中任意摸出一個球,這個球是白球的概率為
(1)求口袋中紅球的個數;
(2)把口袋中的球攪勻后摸出一個球,放回攪勻再摸出第二個球,求摸到的兩個球是一紅一白的概率.(請結合樹狀圖或列表加以解答)

查看答案和解析>>

科目:初中數學 來源:2011年河北省中考模擬試卷數學卷 題型:解答題

(本小題滿分10分)
如圖,在平面直角坐標系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P。

(1)連結PA,若PA=PB,試判斷⊙P與X軸的位置關系,并說明理由;
(2)當K為何值時,以⊙P與直線L的兩個交點和圓心P為頂點的三角形是正三角形?

查看答案和解析>>

科目:初中數學 來源:2011年四川省鹽源縣民族中學中考模擬試題數學卷 題型:解答題

(本小題滿分10分)如圖,在等腰梯形ABCD中,ADBC,AB=DC=5,AD=6,BC=12.動點PD點出發(fā)沿DC以每秒1個單位的速度向終點C運動,動點QC點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當P點到達C點時,Q點隨之停止運動.

【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當P點離開D點幾秒后,PQ//AB;
【小題3】(3)當P、QC三點構成直角三角形時,求點P從點D運動的時間?

查看答案和解析>>

科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數學卷 題型:解答題

(本小題滿分10分)如圖,在平面直角坐標系中,點A、B、C、P的坐標分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。

【小題1】(1)求經過A、B、C三點的拋物線的表達式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對應線段的比為3:1,請在右圖網格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點P同側);
【小題3】(3)經過A1、B1、C1三點的拋物線能否由(1)中的拋物線平
移得到?請說明理由。

查看答案和解析>>

科目:初中數學 來源:2012屆河南省商丘市九年級上學期期末考試數學卷 題型:解答題

(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點O,∠1 = ∠2 = 45°.

【小題1】(1)如圖1,若AO OB,請寫出AOBD
的數量關系和位置關系;
【小題2】(2)將圖1中的MN繞點O順時針旋轉得到
圖2,其中AO = OB
求證:AC BDAC ⊥ BD;
【小題3】(3)將圖2中的OB拉長為AOk倍得到
圖3,求的值.

查看答案和解析>>

同步練習冊答案