如圖,已知∠1=∠2,P為BN上的一點,PF⊥BC于F,PA=PC.
求證:∠PCB+∠BAP=180°.
分析:過點P作PE⊥BA于E,根據(jù)角平分線上的點到角的兩邊距離相等可得PE=PF,然后利用HL證明Rt△PEA與Rt△PFC全等,根據(jù)全等三角形對應角相等可得∠PAE=∠PCB,再根據(jù)平角的定義解答.
解答:證明:如圖,過點P作PE⊥BA于E,
∵∠1=∠2,PF⊥BC于F,
∴PE=PF,∠PEA=∠PFB=90°,
在Rt△PEA與Rt△PFC中
PA=PC
PE=PF

∴Rt△PEA≌Rt△PFC(HL),
∴∠PAE=∠PCB,
∵∠BAP+∠PAE=180°,
∴∠PCB+∠BAP=180°.
點評:本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),作出輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為( 。
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習冊答案