【題目】如圖,我把對(duì)角線(xiàn)互相垂直的四邊形叫做“垂美四邊形”.
(1)性質(zhì)探究:如圖1.已知四邊形ABCD中,AC⊥BD,垂足為O,求證:AB2+CD2=AD2+BC2.
(2)解決問(wèn)題:已知AB=5,BC=4,分別以△ABC的邊BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如圖2,當(dāng)∠ACB=90°,連接PQ,求PQ;
②如圖3,當(dāng)∠ACB≠90°,點(diǎn)M、N分別是AC、AP中點(diǎn)連接MN.若MN=,則S△ABC= .
【答案】(1)詳見(jiàn)解析;(2)①,②
【解析】
(1)利用勾股定理即可得出結(jié)論;
(2)①根據(jù)SAS可證明△PBC≌△ABQ,得∠BPC=∠BAQ,得∠PDA=90°,可求出PQ的長(zhǎng);
②連接PC、AQ交于點(diǎn)D,同①可證△PBC≌△ABQ,則AQ=PC且AQ⊥PC,由MN=2,可知AQ=PC=4.延長(zhǎng)QB作AE⊥QE,求出BE的長(zhǎng),則答案可求出.
解:(1)證明:如圖中,
∵AC⊥BD,
∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,
AB2+CD2=AO2+BO2+CO2+DO2,
∴AB2+CD2=AD2+BC2;
(2)①如圖,連接PC、AQ交于點(diǎn)D,
∵△ABP和△CBQ都是等腰直角三角形,
∴PB=AB,CB=BQ,∠ABP=∠CBQ=90°,
∴∠PBC=∠ABQ,
∴△PBC≌△ABQ(SAS),
∴∠BPC=∠BAQ,
又∵∠BPC+∠CPA+∠BAP=90°,
即∠BAQ+∠CPA+∠BAP=90°,
∴∠PDA=90°,
∴PC⊥AQ,
利用(1)中的結(jié)論:AP2+CQ2=AC2+PQ2
即(5)2+(4)2=32+PQ2;
∴PQ=.
②如圖,連接PC、AQ交于點(diǎn)D,
同①可證△PBC≌△ABQ(SAS),AQ=PC且AQ⊥PC,
∵M、N分別是AC、AP中點(diǎn),
∴MN=,
∵MN=2,
∴AQ=PC=4.
延長(zhǎng)QB作AE⊥QE,
則有AE2+BE2=25,AE2+QE2=48,
∵EQ=4+BE,
∴(4+BE)2﹣BE2=23,
解得BE=,
∴S△ABC=BC×BE==.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上.
(1)B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)為 ;
(2)將△AOB向左平移3個(gè)單位長(zhǎng)度得到△A1O1B1,請(qǐng)畫(huà)出△A1O1B1;
(3)在(2)的條件下,A1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某天下午,出租車(chē)司機(jī)小李始終在一條南北方向的商業(yè)大道上運(yùn)營(yíng),如果規(guī)定向北為正方向,他記錄的出租車(chē)行車(chē)?yán)锍倘缦拢▎挝唬呵祝?/span>,,,,,,,
()將最后一名乘客送到目的地時(shí),小李在出車(chē)地點(diǎn)的什么方向?距離是多少?
()若出租車(chē)每千米耗油量為升,那么這天下午小李的出租車(chē)共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,則下列結(jié)論:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BDF;④∠ABF=∠BCD,其中正確的有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將三角形ABC向左平移至點(diǎn)B與原點(diǎn)重合,得三角形A′OC′.
(1)直接寫(xiě)出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)A ,B ,C ;
(2)畫(huà)出三角形A′OC′;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,M是BC邊上的點(diǎn)(不與B,C兩點(diǎn)重合),AB=AM,點(diǎn)B關(guān)于直線(xiàn)AM對(duì)稱(chēng)的點(diǎn)是N,連接DN,設(shè)∠ABC,∠CDN的度數(shù)分別為,,則關(guān)于的函數(shù)解析式是_______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=4,BC=10,E是直線(xiàn)AD上任意一點(diǎn)(不與點(diǎn)A重合),點(diǎn)A關(guān)于直線(xiàn)BE的對(duì)稱(chēng)點(diǎn)為A′,AA′所在直線(xiàn)與直線(xiàn)BC交于點(diǎn)F.
(1)如圖①,當(dāng)點(diǎn)E在線(xiàn)段AD上時(shí),①若△ABE ∽△DEC,求AE的長(zhǎng);
②設(shè)AE=x,BF=y,求y與x的函數(shù)表達(dá)式.
(2)線(xiàn)段DA′的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把Rt△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到Rt△DFC,若直線(xiàn)DF垂直平分AB,垂足為點(diǎn)E,連接BF,CE,且BC=2.下面四個(gè)結(jié)論:
①BF=;
②∠CBF=45°;
③∠CED=30°;
④△ECD的面積為,
其中正確的結(jié)論有_____.(填番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a,b滿(mǎn)足(a﹣3)2+|b﹣6|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線(xiàn)BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP,∠DOP,∠APO之間滿(mǎn)足的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com