【題目】如圖,AB是⊙O的直徑,弦BC=4cm,F是弦BC的中點,∠ABC=60°.若動點E以1cm/s的速度從A點出發(fā)在AB上沿著A→B運動,設運動時間為t(s)(0≤t<8),連接EF,當△BEF是直角三角形時,t(s)的值為________.
【答案】4s或7s
【解析】
先根據(jù)直徑所對的圓周角是直角可得: ∠ACB=90°,再根據(jù)中點定義和銳角三角函數(shù)求出BF和AB,然后根據(jù)直角的情況分類討論: ①當∠EFB=90°時,用銳角三角函數(shù)求出EB,從而求出AE即可求出t的值; ②當∠BEF=90°時, 用銳角三角函數(shù)求出EB,從而求出AE即可求出t的值;
解:∵AB是直徑
∴∠ACB=90°
∵弦BC=4cm, F是弦BC的中點,∠ABC=60°
∴BF=BC=2cm,AB==8cm
①當∠EFB=90°時,如下圖所示,
∴EB==4cm
∴AE=AB-EB=4cm
∴t=AE÷1=4s;
②當∠BEF=90°時,如下圖所示,
∴EB==1cm
∴AE=AB-EB=7cm
∴t=AE÷1=7s
綜上所述: t(s)的值為4s或7s
故答案為: 4s或7s.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(在的左側),且點坐標為.平行于軸的直線過點.
求一次函數(shù)與二次函數(shù)的解析式;
判斷以線段為直徑的圓與直線的位置關系,并給出證明;
把二次函數(shù)的圖象向右平移個單位,再向下平移個單位,二次函數(shù)的圖象與軸交于,兩點,一次函數(shù)圖象交軸于點.當為何值時,過,,三點的圓的面積最小?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場設立了一個可以自由轉動的轉盤,并規(guī)定:顧客購物10元以上就能獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一區(qū)域就可以獲得相應的獎品。下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
(1)計算并完成表格:
轉動轉盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的頻率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)請估計,當n很大時,頻率將會接近多少?
(3)假如你去轉動該轉盤一次,你獲得鉛筆的概率約是多少?
(4)在該轉盤中,表示“鉛筆”區(qū)域的扇形的圓心角約是多少?(精確到1°)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代著名數(shù)學經(jīng)典,其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.如圖,已知弦尺,弓形高寸,(注:1尺=10寸)問這塊圓柱形木材的直徑是( )
A.13寸B.6.5寸C.20寸D.26寸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
問題情境:在矩形ABCD中,點E為BC邊的中點,將△ABE沿直線AE翻折,使點B與點F重合,直線AF交直線CD于點G.
特例探究 實驗小組的同學發(fā)現(xiàn):
(1)如圖1,當AB=BC時,AG=BC+CG,請你證明該小組發(fā)現(xiàn)的結論;
(2)當AB=BC=4時,求CG的長;
延伸拓展:(3)實知小組的同學在實驗小組的啟發(fā)下,進一步探究了當AB∶BC=∶2時,線段AG,BC,CG之間的數(shù)量關系,請你直接寫出實知小組的結論:___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家計劃從廠家采購空調和冰箱兩種產(chǎn)品共20臺,空調的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購空調的數(shù)量不少于冰箱數(shù)量的,且空調采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調和冰箱,且全部售完.在(1)的條件下,問采購空調多少臺時總利潤最大?并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,點P是線段AD上任意一點,點Q為BC上一點,且AP=CQ.
(1)求證:BP=DQ;
(2)若AB=4,且當PD=5時四邊形PBQD為菱形.求AD為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-1,3),B(-2,1),C(-3,1).
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1點的坐標及sin∠B1C1A1的值;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標;
(3)若點D為線段BC的中點,直接寫出經(jīng)過(2)的變化后點D的對應點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點,與y軸交于點C,點為拋物線的頂點,且.
(1)求拋物線的解析式;
(2)設,,求的值;
(3)探究坐標軸上是否存在點P,使得以P、A、C三點為頂點的三角形與相似,若存在,請指出點P的位置,并直接寫出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com