【題目】已知關(guān)于x的一元二次方程2-3-5=0,試寫出滿足要求的所有a,b的值.

【答案】a=2b=2a=2,b=1a=2,b=0,或a=1,b=2a=0,b=2

【解析】【試題分析】

根據(jù)一元二次方程的定義,要求未知數(shù)的最高次數(shù)為2次,分類討論

a=2,b=2,則方程化簡為 ;

a=2,b=0,則方程化簡為 ;

a=2,b=1,則方程化簡為 ;

a=0,b=2,則方程化簡為;

a=1,b=2,則方程化簡為;

試題解析

根據(jù)題意,若a=2,b=2,則方程化簡為 ;a=2,b=0,則方程化簡為 ;a=2,b=1,則方程化簡為a=0,b=2,則方程化簡為;a=1,b=2,則方程化簡為;故答案為:a=2b=2a=2,b=1a=2b=0,或a=1,b=2a=0,b=2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,∠ADC的平分線DEBC邊交于點E,點P是線段DE上一定點(其中EPPD). 若點FCD邊上(不與D重合),將∠DPF繞點P逆時針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交線段DA于點H、G.

(1) 求證:PG=PF

(2) 探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,每個小正方形的邊長為1,其中有兩個格點A、B和直線l.

1)在直線l上找一點M,使得MAMB;

2)找出點A關(guān)于直線l的對稱點A1;

3P為直線l上一點,連接BP,AP,當△ABP周長最小時,畫出點P的位置,并直接寫出△ABP周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:

如:解方程

解:原方程可變形,得:

,

,

直接開平方并整理,得.

我們稱小明這種解法為平均數(shù)法”.

(1)下面是小明用“平均數(shù)法”解方程時寫的解題過程.

解:原方程可變形,得:

直接開平方并整理,得.

上述過程中的a、bc、d表示的數(shù)分別為 , ,

(2)請用平均數(shù)法解方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC在平面直角坐標系中的位置如圖所示.將△ABC向右平移6個單位長度,再向下平移6個單位長度得到△A1B1C1(圖中每個小方格邊長均為1個單位長度)

1)在圖中畫出平移后的△A1B1C1

2)直接寫出△A1B1C1各頂點的坐標

3)求出△A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程,解應用題

甲乙兩人相約周末到影院看電影,他們的家分別距離影院1200米和2000米,兩人分別從家中同時出發(fā),已知甲和乙的速度比是,結(jié)果甲比乙提前4分鐘到達影院.

1)求甲、乙兩人的速度?

2)在看電影時,甲突然接到家長電話讓其15分鐘內(nèi)趕回家,時間緊迫改變速度,比來時每分鐘多走25米,甲是否能按要求時間到家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃用這兩種原料全部生產(chǎn)A,B兩種產(chǎn)品共50件,生產(chǎn)A,B兩種產(chǎn)品與所需原料情況如下表所示:

原料

型號

甲種原料(千克)

乙種原料(千克)

 A產(chǎn)品(每件)

 9

 3

 B產(chǎn)品(每件)

 4

 10

1)該工廠生產(chǎn)A,B兩種產(chǎn)品有哪幾種方案?

2)如果該工廠生產(chǎn)一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,那么該工廠應該怎樣安排生產(chǎn)可獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,三角形ABC的頂點都在網(wǎng)格點上,其中A2,, B4,3, C1,2).

1)將三角形ABC先向左平移2個單位長度,再向上平移1個單位長度,得到三角形,則三角形的三個頂點坐標。  ),  ),  ).

2)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,且OA=OB.

(1)求證:四邊形ABCD是矩形;

(2)若AB=6,AOB=120°,求BC的長.

查看答案和解析>>

同步練習冊答案