精英家教網 > 初中數學 > 題目詳情

如圖,在以O為圓心的兩個圓中,大圓的半徑為5,小圓的半徑為3,則與小圓相切的大圓的弦長為(   )       

A.4     B.6     C.8     D.10

 

              

 

 

【答案】

C

【解析】本題考查的是垂徑定理

利用小圓半徑,大圓半徑和弦的一半構造直角三角形,利用勾股定理可求算出弦的一半的長,再求弦長.

如圖,

∵AB是小圓的切線,

∴OC⊥AB,

∴AB=2AC,

如圖,在直角△AOC中,根據勾股定理可得,

所以弦長為8.故選C.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在以O為圓心的兩個同心圓中,大圓的直徑AB交小圓于C、D兩點,AC=CD=DB,分別以C、D為圓心,以CD為半徑作圓.若AB=6cm,則圖中陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

9、如圖,在以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,點P為切點,已知AB=8,大圓半徑為5,則小圓半徑為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2006•靜安區(qū)二模)如圖,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于B,大圓的弦BC⊥AB,過點C作大圓的切線交AB的延長線于D,OC交小圓于E
(1)求證:△AOB∽△BDC;
(2)設大圓的半徑為x,CD的長y,yx之間的函數解析式,并寫出定義域.
(3)△BCE能否成為等腰三角形?如果可能,求出大圓半徑;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在以O為圓心的兩個同心圓中,MN為大圓的直徑,交小圓于點P、Q,大圓的弦MC交小圓于點A、B.若OM=2,OP=1,MA=AB=BC,則△MBQ的面積為
3
15
8
3
15
8

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在以O為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若大圓的半徑為5cm,小圓的半徑為3cm,則弦AB的長為( 。

查看答案和解析>>

同步練習冊答案