【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm.點(diǎn)P、Q是BC邊上兩個動點(diǎn)(點(diǎn)Q在點(diǎn)P右邊),PQ=2cm,點(diǎn)P從點(diǎn)C出發(fā),沿CB向右運(yùn)動,運(yùn)動時間為t秒.5s后點(diǎn)Q到達(dá)點(diǎn)B,點(diǎn)P、Q停止運(yùn)動,過點(diǎn)Q作QD⊥BC交AB于點(diǎn)D,連接AP,設(shè)△ACP與△BQD的面積和為S(cm),S與t的函數(shù)圖像如圖2所示.
(1)圖1中BC= cm,點(diǎn)P運(yùn)動的速度為 cm/s;
(2)t為何值時,面積和S最小,并求出最小值;
(3)連接PD,以點(diǎn)P為圓心線段PD的長為半徑作⊙P,當(dāng)⊙P與的邊相切時,求t的值.
【答案】(1)12 , 2;(2)當(dāng)t=2時,面積和S最小,最小為21cm2. (3)當(dāng)t=1或時⊙P與△ABC的邊相切
【解析】
(1)根據(jù)題意知,點(diǎn)Q與點(diǎn)B重合時,△ACP的面積為30,依據(jù)三角形面積公式可得PC的長為10,由PQ=2得BC的長為12,根據(jù)“速度=路程÷時間”可求出點(diǎn)P的速度;
(2)分別求出PC=2t,BQ=10-2t,DQ=5-t,利用三角形面積公式得到二次函數(shù)關(guān)系式,進(jìn)行配方即可求出最值;
(3)分⊙P與AB邊和AC邊相切兩種情況進(jìn)行分類討論求解即可.
(1)當(dāng)點(diǎn)Q與點(diǎn)B重合時,△ACP的面積=30,
∴
∵AC=6cm,
∴PC=10cm,
∴BC=PC+PQ=10+2=12cm,
∴點(diǎn)P的速度為:10÷5=2(cm/s);
(2)由題可知PC=2t,BQ=12-2-2t=10-2t,
∵DQ⊥BC,AC⊥BC,
∴DQ∥AC,
∴△DQB∽△ACB,
∴,即
∴DQ=5-t
∴S==
∴當(dāng)t=2時,面積和S最小,最小為21cm2.
(3)⊙P與BC邊不可能相切
i) ⊙P與AB邊相切時△PQD∽△ACB,
∴,
∴t=1
ii)⊙P與AC邊相切時
在Rt△PQD中,,
∴
∴t=或t=(舍去),
綜上當(dāng)t=1或時⊙P與△ABC的邊相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)為了解學(xué)生對食堂工作的滿意程度,8年級2班數(shù)學(xué)興趣小組在全校甲、乙兩個班內(nèi)進(jìn)行了調(diào)查統(tǒng)計,將調(diào)查結(jié)果分為不滿意、一般、滿意、非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計圖.
請結(jié)合圖中信息,解決下列問題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù);
(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù);
(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為一般的4位同學(xué)中隨機(jī)選擇2位進(jìn)行回訪,已知4位同學(xué)中有2位來自甲班,另2位來自乙班,請用列表或用畫樹狀圖的方法求出選擇的同學(xué)均來自甲班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中我們經(jīng)歷了“確定函數(shù)的表達(dá),利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程,在畫函數(shù)圖象時,我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象.已知函數(shù)y=2﹣b的定義域?yàn)?/span>x≥﹣3,且當(dāng)x=0時y=2﹣2由此,請根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=2﹣b的圖象與性質(zhì)進(jìn)行如下探究:
(1)函數(shù)的解析式為: ;
(2)在給定的平面直角坐標(biāo)系xOy中,畫出該函數(shù)的圖象并寫出該函數(shù)的一條性質(zhì): ;
(3)結(jié)合你所畫的函數(shù)圖象與y=x+1的圖象,直接寫出不等式2﹣b≤x+1的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)畫出△ABC關(guān)于原點(diǎn)O成中心對稱的△A′B′C′,點(diǎn)A′,B′,C′分別是點(diǎn)A,B,C的對應(yīng)點(diǎn).
(2)求過點(diǎn)B′的反比例函數(shù)解析式.
(3)判斷A′B′的中點(diǎn)P是否在(2)的函數(shù)圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校初三學(xué)生上周末使用手機(jī)的情況(選項(xiàng):A.聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其他),隨機(jī)抽查了該校初三若干名學(xué)生,對其上周末使用手機(jī)的情況進(jìn)行統(tǒng)計(每個學(xué)生只選一個選項(xiàng)),繪制了統(tǒng)計表和條形統(tǒng)計圖.
選項(xiàng) | 人數(shù) | 頻率 |
A | 15 | 0.3 |
B | 10 | m |
C | 5 | 0.1 |
D | n | |
E | 5 | 0.1 |
根據(jù)以上信息回答下列問題:
(1)這次調(diào)查的樣本容量是 ;
(2)統(tǒng)計表中m= ,n= ,補(bǔ)全條形統(tǒng)計圖;
(3)若該校初三有540名學(xué)生,請估計該校初三學(xué)生上周末利用手機(jī)學(xué)習(xí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船在A處觀測燈塔C位于北偏東70o方向上,輪船從A處以每小時30海里的速度沿南偏東50o方向勻速航行,1小時后到達(dá)碼頭B處,此時觀測燈塔C位于北偏東25o方向上,求燈塔C與碼頭B之間的距離(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD,AD=6,AB=8,點(diǎn)P為BC邊上的中點(diǎn),點(diǎn)Q是△ACD的內(nèi)切圓圓O上的一個動點(diǎn),點(diǎn)M是CQ的中點(diǎn),則PM的最大值是( 。
A.﹣1B.+1C.3.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△PAB中,PA=PB,經(jīng)過A、B作⊙O.
(1)如圖1,連接PO,求證:PO平分∠APB;
(2)如圖2,點(diǎn)P在⊙O上,PA:AB=:2,E是⊙O上一點(diǎn),連接AE、BE.求tan∠AEB的值;
(3)如圖3,在(2)的條件下,AE經(jīng)過圓心O,AE交PB于點(diǎn)F,過F作FG⊥BE于點(diǎn)G,EF+BG=14,求線段OF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為,與軸的一個交點(diǎn)在和之間,其部分圖象如圖所示,則下列結(jié)論:
;
;
點(diǎn)、、是該拋物線上的點(diǎn),則;
;
(為任意實(shí)數(shù)).
其中正確結(jié)論的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com