如圖,在△ABC中,AD是角平分線,E是AD上的一點,且AB•AE=AC•AD.
求證:CE=CD.
分析:根據(jù)角平分線的性質(zhì)、已知條件AB•AE=AC•AD可以證得△ABD∽△ACE,則該相似三角形的對應(yīng)角相等,即∠ADB=∠AEC,然后利用鄰補角的定義證得∠ADC=∠CED,則CE=CD..
解答:證明:如圖,∵在△ABC中,AD是角平分線,
∴∠BAD=∠CAD.
又∵AB•AE=AC•AD,
AB
AC
=
AD
AE
,
∴△ABD∽△ACE,
∴∠ADB=∠AEC,
∴∠ADC=180°-∠ADB=180°-∠AEC=∠CED,即∠ADC=∠CED,
∴CE=CD.
點評:本題考查的是相似三角形的判定與性質(zhì),能根據(jù)題意判斷出△ABD∽△ACE是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案