如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是           三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.

 

【答案】

(1)等腰(2)(3)存在,

【解析】解:(1)等腰

       (2)∵拋物線的“拋物線三角形”是等腰直角三角形,

        ∴該拋物線的頂點滿足

        ∴

       (3)存在.

        如圖,作△與△關于原點中心對稱,

 

 

        則四邊形為平行四邊形.

        當時,平行四邊形為矩形.

         又∵,

        ∴△為等邊三角形.

        作,垂足為

        ∴

        ∴

        ∴

        ∴,

        ∴,

        設過點三點的拋物線,則

             解之,得

        ∴所求拋物線的表達式為

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(陜西卷)數(shù)學(帶解析) 題型:解答題

如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是          三角形;
(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;
(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是           三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是           三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案