觀察下列各式
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
…
(1)分解因式:x5-1=______;
(2)根據(jù)規(guī)律可得(x-1)(xn-1+…+x+1)=______(其中n為正整數(shù));
(3)計算:(3-1)(350+349+348+…+32+3+1);
(4)計算:(-2)1999+(-2)1998+(-2)1997+…+(-2)3+(-2)2+(-2)+1.
解:(1)分解因式:x
5-1=(x-1)(x
4+x
3+x
2+x+1);
(2)(x-1)(x
n-1+…+x+1)=x
n-1;
(3)(3-1)(3
50+3
49+3
48+…+3
2+3+1)=3
51-1.
(4)∵(-2-1)[(-2)
1999+(-2)
1998+(-2)
1997+…+(-2)
3+(-2)
2+(-2)+1],
=(-2)
2000-1,
=2
2000-1,
∴(-2)
1999+(-2)
1998+(-2)
1997+…+(-2)
3+(-2)
2+(-2)+1=
.
分析:(1)根據(jù)所給出的具有規(guī)律的式子,可知x
5-1=(x-1)(x
4+x
3+x
2+x+1).
(2)觀察所給式子的特點,等號右邊x的指數(shù)比等號左邊x的最高指數(shù)大1,然后寫出即可;
(3)根據(jù)所給式子的規(guī)律,把x換為3即可,(3-1)(3
50+3
49+3
48+…+3
2+3+1)=3
51-1.
(4)先計算(-2-1)[(-2)
1999+(-2)
1998+(-2)
1997+…+(-2)
3+(-2)
2+(-2)+1]=(-2)
2000-1,然后再計算所給式子.
點評:本題考查了平方差公式的推廣,要讀懂題目信息并總結出規(guī)律,具有規(guī)律性是特殊式子的因式分解,解題的關鍵是找出所給范例展示的規(guī)律.