有一張矩形紙片ABCD,AB=2.5,AD=1.5,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將△AED以DE為折痕向右折疊,AE與BC交于點F(如圖),則CF的長為( )

A.1
B.1
C.
D.
【答案】分析:利用折疊的性質,即可求得BD的長與圖3中AB的長,又由相似三角形的對應邊成比例,即可求得BF的長,則由CF=BC-BF即可求得答案.
解答:解:如圖2,根據(jù)題意得:BD=AB-AD=2.5-1.5=1,
如圖3,AB=AD-BD=1.5-1=0.5,
∵BC∥DE,
∴△ABF∽△ADE,
,

∴BF=0.5,
∴CF=BC-BF=1.5-0.5=1.
故選B.
點評:此題考查了折疊的性質與相似三角形的判定與性質.題目難度不大,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為

                                                        (  )

                

A.1                 B.2            C.3                D.4

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省無錫市北塘區(qū)九年級中考二模數(shù)學試卷(帶解析) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點,過點D作DE//BC交AC于點E,分別過點D、E作DF⊥BC,EG⊥BC,垂足分別為點F、點G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內或者其邊上,且互不重合,此時我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實驗操作:當AD=4時,①若∠A=90°,AB=AC,請在圖2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實驗探究:若△ABC為等邊三角形(如圖5),設AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省無錫市北塘區(qū)九年級中考二模數(shù)學試卷(解析版) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點,過點D作DE//BC交AC于點E,分別過點D、E作DF⊥BC,EG⊥BC,垂足分別為點F、點G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內或者其邊上,且互不重合,此時我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實驗操作:當AD=4時,①若∠A=90°,AB=AC,請在圖2中畫出“重疊三角形”,= ; 

②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     

(2)實驗探究:若△ABC為等邊三角形(如圖5),設AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學 題型:選擇題

(2011•濱州)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為( 。

       A、1             B、2

       C、3              D、4

 

查看答案和解析>>

同步練習冊答案