如圖,四邊形OABC為菱形,點(diǎn)B、C在以點(diǎn)O為圓心上,若OA=1,∠1=∠2,則扇形OEF的面積為 【 】
A. B. C. D.
C
【解析】
試題分析:連接OB,根據(jù)菱形的性質(zhì)可得OA=OB=AB,即可證得三角形ABO為正三角形,可得∠AOB=60°,則可得∠EOF=120°,最后根據(jù)扇形的面積公式求解即可.
連接OB
∵四邊形OABC為菱形,點(diǎn)B、C在以點(diǎn)O為圓心的上,若OA=1,∠1=∠2,
∴OA=OB=AB,
∴三角形ABO為正三角形,
∴∠AOB=60°,
∴∠EOF=120°,
∴扇形OEF的面積
故選C.
考點(diǎn):菱形的性質(zhì),扇形的面積公式
點(diǎn)評:解題的關(guān)鍵是熟練掌握菱形的四條邊相等;扇形的面積公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
4 |
3 |
A、1個(gè) | B、2個(gè) | C、3個(gè) | D、4個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com