【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為 .
【答案】
【解析】解:設(shè)圓心為O,連接OA、OD.
∵AD∥BC,AC平分∠BCD,∠ADC=120°,
∴∠BCD=60°,
∵AC平分∠BCD,
∴∠ACD=30°,
∴∠AOD=2∠ACD=60°,∠OAC=∠ACO=30°.
∴∠BAC=90°,
∴BC是直徑,
又∵OA=OD=OB=OC,
則△AOD、△AOB、△COD都是等邊三角形.
∴AB=AD=CD.
又∵四邊形ABCD的周長為10cm,
∴OB=OC=AB=AD=DC=2(cm).
∴陰影部分的面積=S梯形﹣S△ABC= (2+4)× ﹣ ×4× =3 ﹣2 = .
故答案為 .
連接OA、OD,則陰影部分的面積等于梯形的面積減去三角形的面積.根據(jù)題目中的條件不難發(fā)現(xiàn)等邊三角形AOD、AOB、COD,從而求解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B.C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由.
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①探究BD與CF之間的位置關(guān)系,并說明理由;
②當(dāng)AB= ,AD= +1時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,E是AD的中點,將△CDE沿CE折疊后,點A和點D恰好重合,若菱形ABCD的面積為4 ,則菱形ABCD的周長是( )
A.8
B.16
C.8
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+4ax+b與x軸相交于O、A兩點(其中O為坐標原點),過點P(2,2a)作直線PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(其中B、C不重合),連接AP交y軸于點N,連接BC和PC.
(1)a= 時,求拋物線的解析式和BC的長;
(2)如圖a<﹣1時,若AP⊥PC,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標系中,拋物線 交x軸于A、B兩點,交y軸于點C,且對稱軸為x=﹣2,點P(0,t)是y軸上的一個動點.
(1)求拋物線的解析式及頂點D的坐標.
(2)如圖1,當(dāng)0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.
(3)如圖2,當(dāng)點P運動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點P的坐標;若不相似,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知式子M=(a+5)x3+7x2﹣2x+5是關(guān)于x的二次多項式,且二次項系數(shù)為b,數(shù)軸上A、B兩點所對應(yīng)的數(shù)分別是a和b.
(1)則a= ,b= .A、B兩點之間的距離= ;
(2)有一動點P從點A出發(fā)第一次向左運動1個單位長度,然后在新的位置第二次運動,向右運動2個單位長度,在此位置第三次運動,向左運動3個單位長度…按照如此規(guī)律不斷地左右運動,當(dāng)運動到2015次時,求點P所對應(yīng)的有理數(shù).
(3)在(2)的條件下,點P會不會在某次運動時恰好到達某一位置,使點P到點B的距離是點P到點A的距離的3倍?若可能請求出此時點P的位置,并直接指出是第幾次運動,若不可能請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)﹣7﹣5.
(2)(﹣15)﹣(﹣9)
(3)(﹣5)×(﹣7)+20÷(﹣4)
(4)()×(﹣36)
(5)﹣81÷×÷(﹣16)
(6)5﹣(﹣2)+(﹣3)﹣(+4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小宇想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com