(1)觀察與發(fā)現(xiàn)
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認為△AEF是什么形狀的三角形?

(2)實踐與運用
將矩形紙片ABCD(AB<CD)沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點D'處,折痕為EG(如圖④);再展平紙片(如圖⑤).
猜想△EBG的形狀,證明你的猜想,并求圖⑤中∠FEG的大。

解:(1)證明:連DE、DF,如圖,
由第一次折疊可知:AD為∠CAB的平分線,∴∠1=∠2,
由第二次折疊可知:∠CAB=∠EDF,∠1=∠3,∠2=∠4,
∵∠1=∠2,∴∠3=∠4,
在△AED與△AFD中,
,
∴△AED≌△AFD(ASA),
∴AE=AF,
∴△AEF是等腰三角形;
(2)△EBG的形狀是等腰三角形.理由如下:
由折疊知,四邊形ABFE是正方形,∠AEB=45°,
∴∠BED=135°.
又由折疊知,∠BEG=∠DEG=∠BED=67.5°,
又∵AD∥BC,
∴∠BGE=∠BEG,
∴BG=BE,
即△EBG為等腰三角形.
又∵∠BEF=45°,
∴∠FEG=67.5°-45°=22.5°.
分析:(1)第一次折疊,AC落在AB邊上,則折痕AD平分∠BAC,∠EAD=∠FAD;第二次折疊,A、D重合,則∠EAF=∠EDF、∠EDA=∠FDA;AE=ED、AF=FD;易證得△AED≌△AFD,得AE=AF、DE=DF,再根據(jù)第二次折疊所得到的AE=DE、AF=FD,可證得四邊形AEDF的四邊相等,利用等腰三角形的判定方法即可得到△AEF為等腰三角形.
(2)根據(jù)折疊的性質得到四邊形ABFE是正方形,∠AEB=45°;∠BEG=∠DEG=67.5°,而AD∥BC,得∠BGE=∠DEG,則△AEF為等腰三角形,得到∠FEG=67.5°-45°=22.5°.
點評:本題考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應線段相等.也考查了三角形相似的判定與性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)猜想、探究題:
(1)觀察與發(fā)現(xiàn)
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認為△AEF是什么形狀的三角形?
(2)實踐與運用
將矩形紙片ABCD(AB<BC)沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點D′處,折痕為EG(如圖④);再展平紙片(如圖⑤).
猜想△EBG的形狀,證明你的猜想,并求圖⑤中∠FEG的大。精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

 

1.觀察與發(fā)現(xiàn) 小明將三角形紙片沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到(如圖②).小明認為是等腰三角形,你同意嗎?請說明理由.

2.實踐與運用

將矩形紙片沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中的大。

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)

(1)觀察與發(fā)現(xiàn)

小明將三角形紙片沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到(如圖②).小明認為是等腰三角形,你同意嗎?請說明理由.

(2)實踐與運用

將矩形紙片沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中的大。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)
(1)觀察與發(fā)現(xiàn)

小明將三角形紙片沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到(如圖②).小明認為是等腰三角形,你同意嗎?請說明理由.

(2)實踐與運用
將矩形紙片沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中的大小.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省儀征市九年級下學期第一次(3月)學情抽測數(shù)學卷 題型:解答題

 

1.觀察與發(fā)現(xiàn) 小明將三角形紙片沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到(如圖②).小明認為是等腰三角形,你同意嗎?請說明理由.

2.實踐與運用

將矩形紙片沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中的大。

 

 

 

查看答案和解析>>

同步練習冊答案