已知:如圖,在△ABC中,AB=AC,BC=BD,AD=DE=EB,則∠A的度數(shù)是( )

A.30°
B.36°
C.45°
D.50°
【答案】分析:根據(jù)AB=AC,BC=BD,AD=DE=EB可得到幾組相等的角,再根據(jù)三角形外角的性質(zhì)可得到∠C,∠A,∠EBD之間的關(guān)系,再根據(jù)三角形內(nèi)角和定理即可求解.
解答:解:設(shè)∠EBD=x°,
∵BE=DE,
∴∠EDB=∠EBD=x°,
∴∠AED=∠EBD+∠EDB=2x°,
∵AD=DE,
∴∠A=∠AED=2x°,
∴∠BDC=∠A+∠ABD=3x°,
∵BD=BC,
∴∠C=∠BDC=3x°,
∵AB=AC,
∴∠ABC=∠C=3x°,
∵∠A+∠ABC+∠C=180°,
∴2x+3x+3x=180,
解得:x=22.5,
∴∠A=2x°=45°.
故選C.
點評:此題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì)及三角形內(nèi)角和定理的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案