如圖,∠ABC、∠ACB的平分線相交于F,過(guò)F作DE∥BC交AB于D,交AC于E,若AB=8cm,AC=9cm,則△ADE的周長(zhǎng)是________cm.

17
分析:先根據(jù)角平分線的定義及平行線的性質(zhì)證明△BDF和△CEF是等腰三角形,再由等腰三角形的性質(zhì)得BD=DF,CE=EF,則△ADE的周長(zhǎng)=AB+AC=17cm.
解答:∵BF平分∠ABC,∴∠DBF=∠CBF,
∵DE∥BC,∴∠CBF=∠DFB,
∴∠DBF=∠DFB,
∴BD=DF,
同理FE=EC,
∴△AED的周長(zhǎng)=AD+AE+ED=AB+AC=8+9=17cm.
故答案為17.
點(diǎn)評(píng):本題考查等腰三角形的性質(zhì),平行線的性質(zhì)及角平分線的性質(zhì).有效的進(jìn)行線段的等量代換是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,△ABC中,∠ACB=90°,CD⊥AB于D,則圖中所有與∠B互余的角
∠A與∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,AB的延長(zhǎng)線與過(guò)C點(diǎn)的切線GC相交于點(diǎn)D,BE與AC相交于點(diǎn)F精英家教網(wǎng),且CB=CE.
求證:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知:如圖,△ABC內(nèi)接于⊙O,AE切⊙O于點(diǎn)A,BD∥AE交AC的延長(zhǎng)線于點(diǎn)D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC、△DCE、△FEG是全等的三個(gè)等腰三角形,底邊BC、CE、EG在同一直線上,且AB=
3
,BC=1,連接BF交AC、DC、DE分別為P、Q、R.
試證△BFG∽△FEG,并求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC的兩個(gè)外角的平分線相交于D,若∠B=50°,則∠ADC=(  )
A、60°B、80°C、65°D、40°

查看答案和解析>>

同步練習(xí)冊(cè)答案