)
已知函數(shù)為方程的兩個(gè)根,點(diǎn)M(t,T)在函數(shù)的圖象上.
(Ⅰ)若,求函數(shù)的解析式;
(Ⅱ)在(Ⅰ)的條件下,若函數(shù)與的圖象的兩個(gè)交點(diǎn)為,當(dāng)的面積為1/12³時(shí),求的值;
(Ⅲ)若,當(dāng)時(shí),試確定三者之間的大小關(guān)系,并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) 下冊(配北師大版新課標(biāo)) 北師大版新課標(biāo) 題型:044
如下圖所示,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交射線OP于M,N兩點(diǎn),且∠MAN=∠POQ=α(α為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)中心,AM邊從與AO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MAN保持不變)時(shí),M,N兩點(diǎn)在射線OP上同時(shí)以不同的速度向右平移.設(shè)OM=x,ON=y(tǒng)(y>x≥0),△AOM的面積為S,且cosα,OA是方程2z2-5z+2=0的兩個(gè)根.
(1)當(dāng)∠MAN旋轉(zhuǎn)30°(即∠OAM=30°)時(shí),求點(diǎn)N移動(dòng)的距離;
(2)求證AN2=ON·MN;
(3)試求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044
如圖,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交OP于M、N兩點(diǎn),且∠MAN=∠POQ=α(α為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)點(diǎn)中心,AM邊從與AO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MAN保持不變)時(shí),M、N在射線OP上同時(shí)以不同的速度向右平行移動(dòng).設(shè)OM=x,ON=y(tǒng)(y>x≥0),△AOM面積為S,若cosα、OA是方程2z2-5z+2=0的兩個(gè)根.
(1)當(dāng)∠AMN旋轉(zhuǎn)(即∠OAM=)時(shí),求點(diǎn)N移動(dòng)的距離;
(2)求證:AN2=ON·MN;
(3)求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) (下冊) (配華東師大版新課標(biāo)) 華東師大版新課標(biāo) 題型:044
如圖所示,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交射線OP于M,N兩點(diǎn),且∠MAN=∠POQ=α(α為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)中心,AM從與AO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MAN保持不變)時(shí),M,N兩點(diǎn)在射線OP上同時(shí)以不同的速度向右平行移動(dòng),設(shè)OM=x,ON=y(tǒng)(y>x≥0),△AOM的面積為S,若cosα,OA是方程2z2-5z+2=0的兩個(gè)根.
(1)當(dāng)∠MAN旋轉(zhuǎn)30°(即∠OAM=30°)時(shí),求點(diǎn)N移動(dòng)的距離;
(2)求證AN2=ON·MN;
(3)求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:是方程的兩個(gè)實(shí)數(shù)根,且,拋物線的圖象經(jīng)過點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)點(diǎn)是拋物線上一動(dòng)點(diǎn),且位于第三象限,四邊形是以為對角線的平行四邊形,求的面積與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,當(dāng)的面積為24時(shí),是否存在這樣的點(diǎn),使為正方形?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com