已知函數(shù)為方程的兩個(gè)根,點(diǎn)M(t,T)在函數(shù)的圖象上.

(Ⅰ)若,求函數(shù)的解析式;

(Ⅱ)在(Ⅰ)的條件下,若函數(shù)的圖象的兩個(gè)交點(diǎn)為,當(dāng)的面積為1/12³時(shí),求的值;

(Ⅲ)若,當(dāng)時(shí),試確定三者之間的大小關(guān)系,并說明理由.

.

解(Ⅰ)

.

分別代入,得

解得.

函數(shù)的解析式為

(Ⅱ)由已知,得,設(shè)的高為,

,即.

根據(jù)題意,

,得.

當(dāng)時(shí),解得;

當(dāng)時(shí),解得.

的值為.

(Ⅲ)由已知,得

.

,

,

,化簡得.

,得,      .

.

,,,

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) 下冊(配北師大版新課標(biāo)) 北師大版新課標(biāo) 題型:044

如下圖所示,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交射線OP于M,N兩點(diǎn),且∠MAN=∠POQ=α(α為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)中心,AM邊從與AO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MAN保持不變)時(shí),M,N兩點(diǎn)在射線OP上同時(shí)以不同的速度向右平移.設(shè)OM=x,ON=y(tǒng)(y>x≥0),△AOM的面積為S,且cosα,OA是方程2z2-5z+2=0的兩個(gè)根.

(1)當(dāng)∠MAN旋轉(zhuǎn)30°(即∠OAM=30°)時(shí),求點(diǎn)N移動(dòng)的距離;

(2)求證AN2=ON·MN;

(3)試求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044

如圖,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交OP于M、N兩點(diǎn),且∠MAN=∠POQ=α(α為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)點(diǎn)中心,AM邊從與AO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MAN保持不變)時(shí),M、N在射線OP上同時(shí)以不同的速度向右平行移動(dòng).設(shè)OM=x,ON=y(tǒng)(y>x≥0),△AOM面積為S,若cosα、OA是方程2z2-5z+2=0的兩個(gè)根.

(1)當(dāng)∠AMN旋轉(zhuǎn)(即∠OAM=)時(shí),求點(diǎn)N移動(dòng)的距離;

(2)求證:AN2=ON·MN;

(3)求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) (下冊) (配華東師大版新課標(biāo)) 華東師大版新課標(biāo) 題型:044

如圖所示,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交射線OP于M,N兩點(diǎn),且∠MAN=∠POQ=α(α為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)中心,AM從與AO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MAN保持不變)時(shí),M,N兩點(diǎn)在射線OP上同時(shí)以不同的速度向右平行移動(dòng),設(shè)OM=x,ON=y(tǒng)(y>x≥0),△AOM的面積為S,若cosα,OA是方程2z2-5z+2=0的兩個(gè)根.

(1)當(dāng)∠MAN旋轉(zhuǎn)30°(即∠OAM=30°)時(shí),求點(diǎn)N移動(dòng)的距離;

(2)求證AN2=ON·MN;

(3)求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:是方程的兩個(gè)實(shí)數(shù)根,且,拋物線的圖象經(jīng)過點(diǎn)

(1)求這個(gè)拋物線的解析式;

(2)設(shè)點(diǎn)是拋物線上一動(dòng)點(diǎn),且位于第三象限,四邊形是以為對角線的平行四邊形,求的面積之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)在(2)的條件下,當(dāng)的面積為24時(shí),是否存在這樣的點(diǎn),使為正方形?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

 


查看答案和解析>>

同步練習(xí)冊答案