點A(n,1-n)不可能在第幾象限


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:確定出n為負(fù)數(shù)時,1-n一定是正數(shù),再根據(jù)各象限內(nèi)點的坐標(biāo)特征解答.
解答:n<0時,-n>0,
所以,1-n>1,
即點A的橫坐標(biāo)是負(fù)數(shù)時,縱坐標(biāo)一定是正數(shù),
所以,點A不可能在第三象限.
故選C.
點評:本題考查了各象限內(nèi)點的坐標(biāo)的符號特征,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-
2
3
x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時點(-2,0)與點(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點M,問:是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請說明理由;
(3)設(shè)直線l2與x軸的交點為A,與y軸的交點為B,以點C(0,
2
3
)為圓心,CA的長為半徑作圓,過點B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(點D在點E的下方)
①在如圖所示的直角坐標(biāo)系中畫出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,
S1
S2
=y
,求y與x之間的函數(shù)關(guān)系式精英家教網(wǎng),并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形ABCD是正方形.
(1)如圖1,點G是BC邊上任意一點(不與B、C兩點重合),連接AG,作BF⊥AG于點F,DE⊥AG于點E.求證:△ABF≌△DAE;
(2)在(1)中,線段EF與AF、BF的等量關(guān)系是
 
(直接寫出結(jié)論即可,不需要證明);
(3)如圖2,點G是CD邊上任意一點(不與C、D兩點重合),連接AG,作BF⊥AG于點F,DE⊥AG于點E.那么圖中全等三角形是
 
,線段EF與AF、BF的等量關(guān)系是
 
(直接寫出結(jié)論即精英家教網(wǎng)可,不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對任意實數(shù)x,點P(x,x2)一定不在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角系中,直線AB:y=
4
a
x+4(a≠0)
分別交x軸、y軸于B、A兩點.直線AE分別交x軸、y軸于E、A兩點,D是x軸上的一點,OA=OD.過D精英家教網(wǎng)作CD⊥x軸交AE于C.連接BC,當(dāng)動點B在線段OD上運動(不與點O點D重合)且AB⊥BC時.
(1)求證:△ABO∽△BCD;
(2)求線段CD的長(用a的代數(shù)式表示);
(3)若直線AE的方程是y=-
13
16
x+b
,求tan∠BAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動點,將直線OP繞點P逆時針方向旋轉(zhuǎn)90°交直線BC于點Q;
(1)當(dāng)點P在線段AB上運動(不與A,B重合)時,求證:OA•BQ=AP•BP;
(2)在(1)成立的條件下,設(shè)點P的橫坐標(biāo)為m,線段CQ的長度為l,求出l關(guān)于m的函數(shù)解析式,并判斷l(xiāng)是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案