精英家教網 > 初中數學 > 題目詳情
已知拋物線y=ax2+bx+c(a>0)的頂點是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點,與x軸、y軸分別交于點M和N.
(1)設點P到x軸的距離為2,試求直線l的函數關系式;
(2)若線段MP與PN的長度之比為3:1,試求拋物線的函數關系式.
【答案】分析:(1)由于拋物線的頂點為C(0,1),因此拋物線的解析式中b=0,c=1.即拋物線的解析式為y=ax2+1.已知了P到x軸的距離為2,即P點的縱坐標為2.可根據直線l的解析式求出P點的坐標,然后將P點坐標代入拋物線的解析式中即可求得a的值,也就能求出直線l的函數關系式.
(2)本題要根據相似三角形來求.已知了線段MP與PN的長度之比為3:1,如果過P作x軸的垂線,根據平行線分線段成比例定理即可得出P點的縱坐標的值.進而可仿照(1)的方法,先代入直線的解析式,然后再代入拋物線中即可求出a的值,也就求出了拋物線的解析式.
解答:解:(1)∵拋物線的頂點是C(0,1),
∴b=0,c=1,
∴y=ax2+1.
如圖1,∵a>0,直線l過點N(0,3),
∴M點在x軸正半軸上.
∵點P到x軸的距離為2,
即點P的縱坐標為2.
把y=2代入y=-ax+3
得,x=,
∴P點坐標為(,2).
∵直線與拋物線交于點P,
∴點P在y=ax2+1上,
∴2=a•(2+1,
∴a=1.
∴直線l的函數關系式為y=-x+3.

(2)如圖1,若點P在y軸的右邊,記為P1
過點P1作P1A⊥x軸于A,
∵∠P1MA=∠NMO,
∴Rt△MP1A∽Rt△MNO,


∴MP1=3P1N,MN=MP1+P1N=4P1N
,

∵ON=3,
∴P1A=,
即點P1的縱坐標為
把y=代入y=-ax+3,
得x=,
∴點P1的坐標為(,).
又∵點P1是直線l與拋物線的交點,
∴點P1在拋物線y=ax2+1上,
=a•(2+1,
∴a=
拋物線的函數關系式為y=x2+1.
如圖2,若點P在y軸的左邊,記為P2.作P2A⊥x軸于A,
∵∠P2MA=∠NMO,
∴Rt△MP2A∽Rt△MNO,
=

∴MP2=3P2N,MN=MP2-P2N=2P2N,
,即=,
∵ON=3,
∴P2A=,即即點P2的縱坐標為
由P2在直線l上可求得P2(-,),
又∵P2在拋物線上,
=a•(-2+1,
∴a=
∴拋物線的函數關系式為y=x2+1.
點評:本題主要考查了一次函數與二次函數解析式的確定以及函數圖象交點等知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案