解:(1)∵t=1秒,
∴BP=CQ=3×1=3厘米,
∵AB=10厘米,點D為AB的中點,
∴BD=5厘米.
又∵PC=BC-BP,BC=8厘米,
∴PC=8-3=5厘米,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS);
(2)∵v
P≠v
Q,∴BP≠CQ,
又∵△BPD≌△CPQ,∠B=∠C,
∴BP=PC=4cm,CQ=BD=5cm,
∴點P,點Q運動的時間t=
=
秒,
∴v
Q=
=
=
(厘米/秒).
分析:(1)根據(jù)時間和速度分別求得兩個三角形中的邊的長,根據(jù)SAS判定兩個三角形全等.
(2)根據(jù)全等三角形應滿足的條件探求邊之間的關系,再根據(jù)路程=速度×時間公式,先求得點P運動的時間,再求得點Q的運動速度.
點評:此題考查了全等三角形的判定,等腰三角形的性質(zhì).解題時,主要是運用了路程=速度×時間的公式.熟練運用全等三角形的判定和性質(zhì),能夠分析出追及相遇的問題中的路程關系.