【題目】在北京市開展的首都少年先鋒崗活動(dòng)中,某數(shù)學(xué)小組到人民英雄紀(jì)念碑站崗執(zhí)勤,并在活動(dòng)后實(shí)地測(cè)量了紀(jì)念碑的高度. 方法如下:如圖,首先在測(cè)量點(diǎn)A處用高為1.5m的測(cè)角儀AC測(cè)得人民英雄紀(jì)念碑MN頂部M的仰角為35°,然后在測(cè)量點(diǎn)B處用同樣的測(cè)角儀BD測(cè)得人民英雄紀(jì)念碑MN頂部M的仰角為45°,最后測(cè)量出A,B兩點(diǎn)間的距離為15m,并且NB,A三點(diǎn)在一條直線上,連接CD并延長交MN于點(diǎn)E. 請(qǐng)你利用他們的測(cè)量結(jié)果,計(jì)算人民英雄紀(jì)念碑MN的高度.

(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7

【答案】人民英雄紀(jì)念碑MN.的高度約為36.5.

【解析】試題分析:由題意得,四邊形ACDB,ACEN為矩形,從而得EN=AC=1.5.AB=CD=15,在Rt△MED中,由題意可得ME=DE,設(shè)ME=DE=x,則EC=x+15,在Rt△MEC中,可得ME=ECtan∠MCE,從而有x≈0.7(x+15),求出x的值,從而得MN=ME+EN≈36.5 .

試題解析:由題意得,四邊形ACDBACEN為矩形,

EN=AC=1.5AB=CD=15,

中,

MED90°,MDE45°,

∴∠EMDMDE45°

MEDE,

設(shè)MEDEx,則ECx+15,

中,∠MEC90°,

MCE35°,

,

, ,

,

,

∴人民英雄紀(jì)念碑MN.的高度約為36.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義如果過三角形一個(gè)頂點(diǎn)的直線與對(duì)邊所在直線相交,得到的三角形中有一個(gè)與原三角形相似,那么我們稱這樣的直線為三角形的相似線

如圖1,ABC,直線CDAB交于點(diǎn)D,ACD∽△ABC則稱直線CDABC的相似線

解決問題

已知如圖2,ABC,BACACB ABC

求作ABC的相似線

1小明用如下方法作出ABC的一條相似線

作法如圖3,ABC的外接圓O;

C為圓心,AC的長為半徑畫弧,O交于點(diǎn)P;

連接AP,BC于點(diǎn)D

則直線ADABC的相似線

請(qǐng)你證明小明的作法的正確性

2A點(diǎn)還有其它的ABC的相似線,請(qǐng)你參考1中的作法與結(jié)論利用尺規(guī)作圖,在圖3中再作出一條ABC的相似線AE;(寫出作法,保留作圖痕跡,不要證明

3ABC,BAC=90°ABC中過A點(diǎn)的相似線有 ,B點(diǎn)的相似線有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC△DEF的頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

1)畫出△ABC向上平移4個(gè)單位長度后所得到的△A1B1C1;

2)畫出△DEF繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后所得到的△D1E1F1

3△A1B1C1△D1E1F1組成的圖形是軸對(duì)稱圖形嗎?如果是,請(qǐng)直接寫出對(duì)稱軸所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個(gè)長方形沿著對(duì)角線剪開即可得到兩個(gè)全等的三角形,再把△ABC沿著AC方向平移,得到圖中的△GBH,BGAC于點(diǎn)EGHCD于點(diǎn)F.在圖中,除△ACD與△HGB全等外,你還可以指出哪幾對(duì)全等的三角形(不能添加輔助線和字母)?請(qǐng)選擇其中一對(duì)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)?jiān)跈M線上填上合適的內(nèi)容,完成下面的證明:

如圖,射線AH交折線ACGFEN于點(diǎn)B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.

證明:∵∠A=∠1(已知)

∴AC∥GF(

∴( )(

∵∠C=∠F(已知)

∴∠F=∠G

∴( )(

∴( )(

∵BM平分∠CBD,EN平分∠FEH

∴∠2= ∠3=

∴∠2=∠3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCDAB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),過點(diǎn)EEFDEBC于點(diǎn)F,連接DF.已知AB = 4cmAD = 2cm,設(shè)AE兩點(diǎn)間的距離為xcm,DEF面積為ycm2.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過程,請(qǐng)補(bǔ)充完整:

1)確定自變量x的取值范圍是 ;

2)通過取點(diǎn)、畫圖、測(cè)量、分析,得到了xy的幾組值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

y/cm2

4.0

3.7

3.9

3.8

3.3

2.0

(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

4結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)DEF面積最大時(shí),AE的長度為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:如果⊙C的半徑為r,C外一點(diǎn)P到⊙C的切線長小于或等于2r,那么點(diǎn)P叫做⊙C離心點(diǎn)”.

1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)P1, ),P20,-2),P3,0中,⊙O離心點(diǎn) ;

②點(diǎn)Pm,n)在直線上,且點(diǎn)P是⊙O離心點(diǎn),求點(diǎn)P橫坐標(biāo)m的取值范圍;

2C的圓心Cy軸上,半徑為2,直線x軸、y軸分別交于點(diǎn)AB. 如果線段AB上的所有點(diǎn)都是⊙C離心點(diǎn),請(qǐng)直接寫出圓心C縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶節(jié)放假時(shí),小華一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆.早上從家里出發(fā),向東走了4千米到超市買東西,然后又向東走了3千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里.

(1)若以家為原點(diǎn),向東為正方向,用1個(gè)單位長度表示1千米,請(qǐng)將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來;

(2)問超市A和外公家C相距多少千米?

(3)若小轎車每千米耗油0.09升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量.(精確到0.1升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點(diǎn)為M(﹣2,﹣4),與x軸交于A、B兩點(diǎn),且A(﹣6,0),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)解析式;

(2)求△ABC的面積;

(3)能否在拋物線第三象限的圖象上找到一點(diǎn)P,使△APC的面積最大?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案