【題目】某電器商場銷售A、B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40元,商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)求商場銷售A、B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格﹣進貨價格)
(2)商場準備用不多于2500元的資金購進A、B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?
【答案】
(1)解:設(shè)A種型號計算器的銷售價格是x元,B種型號計算器的銷售價格是y元,由題意得:
,
解得: ;
答:A種型號計算器的銷售價格是42元,B種型號計算器的銷售價格是56元
(2)解:設(shè)購進A型計算器a臺,則購進B型計算器:(70﹣a)臺,
則30a+40(70﹣a)≤2500,
解得:a≥30,
答:最少需要購進A型號的計算器30臺.
【解析】(1)首先設(shè)A種型號計算器的銷售價格是x元,A種型號計算器的銷售價格是y元,根據(jù)題意可等量關(guān)系:①5臺A型號和1臺B型號計算器,可獲利潤76元;②銷售6臺A型號和3臺B型號計算器,可獲利潤120元,根據(jù)等量關(guān)系列出方程組,再解即可;(2)根據(jù)題意表示出所用成本,進而得出不等式求出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上A、B兩點間的距離是指( )
A.經(jīng)過A,B兩點的直線
B.射線AB
C.A,B兩點間的線段
D.A,B兩點間線段長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn):學(xué)生對提出概念的接受能力y與提出概念的時間x(min)之間滿足二次函數(shù)關(guān)系y=﹣0.1x2+2.6x+43.則使學(xué)生對概念的接受能力最大.則提出概念的時間應(yīng)為( 。
A. 13minB. 26minC. 52minD. 59.9min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,將繞點順時針旋轉(zhuǎn)得到,當(dāng)點、、三點共線時,旋轉(zhuǎn)角為,連接,交于點。下面結(jié)論:①為等腰三角形;②;③;④中,正確的是( )
A. ①③④ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程組 ,由于甲看錯了方程①中的a得到方程組的解為 ,乙看錯了方程②中的b得到方程組的解為 ,若按正確的a、b計算,則原方程組的解x與y的差x﹣y的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,AB是⊙O的弦,點E是弧AB的中點,連結(jié)OE,交AB于點D,再連結(jié)CD,若tan∠CDB=,則AB與DE的數(shù)量關(guān)系是( )
A. AB=2DE B. AB=3DE C. AB=4DE D. 2AB=3DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點,點A、C的坐標(biāo)分別為A(3,0),C(0,2),點B在第一象限.
(1)寫出點B的坐標(biāo);
(2)若過點C的直線交長方形的OA邊于點D,且把長方形OABC的周長分成2:3的兩部分,求點D的坐標(biāo);
(3)如果將(2)中的線段CD向下平移3個單位長度,得到對應(yīng)線段C′D′,在平面直角坐標(biāo)系中畫出△CD′C′,并求出它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為5厘米,A為線段OP的中點,當(dāng)OP=6厘米時,點A與⊙O的位置關(guān)系是( )
A.點A在⊙O內(nèi)
B.點A在⊙O上
C.點A在⊙O外
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com