(2012•威海)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為B(2,1),且過(guò)點(diǎn)A(0,2),直線y=x與拋物線交于點(diǎn)D,E(點(diǎn)E在對(duì)稱軸的右側(cè)),拋物線的對(duì)稱軸交直線y=x于點(diǎn)C,交x軸于點(diǎn)G,EF⊥x軸,垂足為點(diǎn)F,點(diǎn)P在拋物線上,且位于對(duì)稱軸的右側(cè),PM⊥x軸,垂足為點(diǎn)M,△PCM為等邊三角形.

(1)求該拋物線的表達(dá)式;
(2)求點(diǎn)P的坐標(biāo);
(3)試判斷CE與EF是否相等,并說(shuō)明理由;
(4)連接PE,在x軸上點(diǎn)M的右側(cè)是否存在一點(diǎn)N,使△CMN與△CPE全等?若存在,試求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)拋物線的頂點(diǎn)是(2,1),因而設(shè)拋物線的表達(dá)式為y=a(x-2)2+1,把A的坐標(biāo)代入即可求得函數(shù)的解析式;
(2)根據(jù)△PCM為等邊三角形,則△CGM中,∠CMD=30°,CG的長(zhǎng)度可以求得,利用直角三角形的性質(zhì),即可求得CM,即等邊△CMP的邊長(zhǎng),則P的縱坐標(biāo),代入二次函數(shù)的解析式,即可求得P的坐標(biāo);
(3)解方程組即可求得E的坐標(biāo),則EF的長(zhǎng)等于E的縱坐標(biāo),OE的長(zhǎng)度,利用勾股定理可以求得,同理,OC的長(zhǎng)度可以求得,則CE的長(zhǎng)度即可求解;
(4)可以利用反證法,假設(shè)x軸上存在一點(diǎn),使△CMN≌△CPE,可以證得EN=EF,即N與F重合,與點(diǎn)E為直線y=x上的點(diǎn),∠CEF=45°即點(diǎn)N與點(diǎn)F不重合相矛盾,故N不存在.
解答:解:(1)設(shè)拋物線的表達(dá)式為y=a(x-2)2+1,將點(diǎn)A(0,2)代入,得
a(0-2)2+1=2…1分
解這個(gè)方程,得a=
1
4

∴拋物線的表達(dá)式為y=
1
4
(x-2)2+1=
1
4
x2-x+2;…2分

(2)將x=2代入y=x,得y=2
∴點(diǎn)C的坐標(biāo)為(2,2)即CG=2…3分
∵△PCM為等邊三角形
∴∠CMP=60°,CM=PM
∵PM⊥x軸,
∴∠CMG=30°
∴CM=4,GM=2
3

∴OM=2+2
3
,PM=4…4分
將y=4代入y=
1
4
(x-2)2+1,得4=
1
4
(x-2)2+1
解這個(gè)方程,得x1=2+2
3
=OM,x2=2-2
3
<0(不合題意,舍去).
∴點(diǎn)P的坐標(biāo)為(2+2
3
,4)…5分

(3)相等…6分
把y=x代入y=
1
4
x2-x+2,得x=
1
4
x2-x+2
解這個(gè)方程,得x1=4+2
2
,x2=4-2
2
<2(不合題意,舍去)
∴y=4+2
2
=EF
∴點(diǎn)E的坐標(biāo)為(4+2
2
,4+2
2

∴OE=
EF2+OF2
=4+4
2

又∵OC=
CG2+OG2
=2
2
…8分
∴CE=OE-OC=4+2
2

∴CE=EF…9分

(4)不存在
假設(shè)x軸上存在一點(diǎn),使△CMN≌△CPE,則CN=CE,∠MCN=∠PCE
∵∠MCP=60°,
∴∠NCE=60°
又∵CE=EF,
∴CN=EF…11分
又∵點(diǎn)E為直線y=x上的點(diǎn),
∴∠CEF=45°,
∴點(diǎn)N與點(diǎn)F不重合.
∵EF⊥x軸,這與“垂線段最短”矛盾,
∴原假設(shè)錯(cuò)誤,滿足條件的點(diǎn)N不存在.
點(diǎn)評(píng):本題考查了待定系數(shù)法求二次函數(shù)的解析式,以及等邊三角形的性質(zhì),解直角三角形,反證法,正確求得E的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海)如圖,a∥b,點(diǎn)A在直線a上,點(diǎn)C在直線b上,∠BAC=90°,AB=AC,若∠1=20°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海)如圖,在?ABCD中,AE,CF分別是∠BAD和∠BCD的平分線,添加一個(gè)條件,仍無(wú)法判斷四邊形AECF為菱形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海)如圖,在平面直角坐標(biāo)系中,線段OA1=1,OA1與x軸的夾角為30°,線段A1A2=1,A2A1⊥OA1,垂足為A1;線段A2A3=1,A3A2⊥A1A2,垂足為A2;線段A3A4=1,A4A3⊥A2A3,垂足為A3;…按此規(guī)律,點(diǎn)A2012的坐標(biāo)為
(503
3
-503,503
3
+503)
(503
3
-503,503
3
+503)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海)如圖,直線l1,l2交于點(diǎn)A,觀察圖象,點(diǎn)A的坐標(biāo)可以看作方程組
y=-x+2
y=2x-1
y=-x+2
y=2x-1
的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海)如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E.K為
AC
上一動(dòng)點(diǎn),AK,DC的延長(zhǎng)線相交于點(diǎn)F,連接CK,KD.
(1)求證:∠AKD=∠CKF;
(2)若AB=10,CD=6,求tan∠CKF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案