與拋物線數(shù)學(xué)公式頂點(diǎn)相同,開口大小相同,開口方向相反的函數(shù)為________.

y=-x2
分析:與拋物線頂點(diǎn)相同,形狀也相同,而開口方向相反的拋物線,即與拋物線只有二次項(xiàng)系數(shù)不同.
解答:與拋物線頂點(diǎn)相同,形狀也相同,而開口方向相反的拋物線,即與拋物線只有二次項(xiàng)系數(shù)不同.
即y=-x2
故答案為y=-x2
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì),二次函數(shù)的解析式中,二次項(xiàng)系數(shù)確定函數(shù)開口方向.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
(1)求過頂點(diǎn)A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過A點(diǎn);
(3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E精英家教網(wǎng)、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
(1)求過頂點(diǎn)A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過A點(diǎn);
(3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年福建省漳州市龍文中學(xué)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
(1)求過頂點(diǎn)A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過A點(diǎn);
(3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年福建省福州市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
(1)求過頂點(diǎn)A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過A點(diǎn);
(3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案