已知平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),在直線BA上截取BF=2AF,EF交BD于點(diǎn)G,則數(shù)學(xué)公式=________.


分析:由平行四邊形的性質(zhì)易證兩三角形相似,但是由于點(diǎn)F的位置未定,需分類討論.分兩種情況:(1)點(diǎn)F在線段AB上時(shí);(2)點(diǎn)F在線段BA的延長(zhǎng)線上時(shí).
解答:(1)點(diǎn)F在線段AB上時(shí),設(shè)EF與DA的延長(zhǎng)線交于H,
∵BC∥AD,
∴△EBF∽△HAF,
∴HA:BE=AF:BF=1:2,
即HA=BE
∵BC∥AD,
∴△DHG∽△BEG,
∴BG:DG=BE:DH
∵BC=AD=2BE,
∴DH=AD+AH=2BE+BE=BE,
∴BG:DG=2:5;
(2)點(diǎn)F在線段AB的延長(zhǎng)線上時(shí),設(shè)EF與DA的延長(zhǎng)線交于H,
∵BC∥AD,
∴△EBF∽△HAF,
∴HA:BE=AF:BF=1:2,
即HA=BE
∵BC∥AD,
∴△DHG∽△BEG,
∴BG:DG=BE:DH
∵BC=AD=2BE,
∴DH=AD+AH=2BE-BE=BE,
∴BG:DG=2:3.
故答案為:
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)以及分類討論的數(shù)學(xué)思想;其中由相似三角形的性質(zhì)得出比例式是解題關(guān)鍵.注意:求相似比不僅要認(rèn)準(zhǔn)對(duì)應(yīng)邊,還需注意兩個(gè)三角形的先后次序.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出∠ABC的平分線BE,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)F(保留作圖痕跡,不寫作法);
(2)在第(1)題的條件下,求證:△ABE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知平行四邊形ABCD的周長(zhǎng)為32cm,△ABC的周長(zhǎng)為20cm,則AC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD,AD=a,AB=b,∠ABC=α.點(diǎn)F為線段BC上一點(diǎn)(端點(diǎn)B,C除外),連接AF,AC精英家教網(wǎng),連接DF,并延長(zhǎng)DF交AB的延長(zhǎng)線于點(diǎn)E,連接CE.
(1)當(dāng)F為BC的中點(diǎn)時(shí),求證:△EFC與△ABF的面積相等;
(2)當(dāng)F為BC上任意一點(diǎn)時(shí),△EFC與△ABF的面積還相等嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

49、如圖,已知平行四邊形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD中,對(duì)角線BD平分∠ABC,求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案