如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點(diǎn)E,EF⊥AB于點(diǎn)F,EF交BD于點(diǎn)G,設(shè)AD=a,BC=b.

(1)求CD的長(zhǎng)度(用a,b表示);

(2)求EG的長(zhǎng)度(用a,b表示);

(3)試判斷EG與FG是否相等,并說明理由.

 


解:(1)∵AB為半圓的直徑,∠DAB=∠ABC=90°,

∴DA、BC為半圓O的切線,

又∵CD與以AB為直徑的半圓相切于點(diǎn)E,

∴DE=DA=a,CE=CB=b,

∴CD=a+b;

(2)∵EF⊥AB,

∴EG∥BC,

∴EG:BC=DE:DC,即EG :b=a :(a+b),

;

(3)EG與FG相等.理由如下:

∵EG∥BC,

,即  ①,

又∵GF∥AD,

,即  ②,

①+②得

,

,

∴EG=FG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案