如圖①,已知線段AB=8,以AB為直徑作半圓O,再以O(shè)A為直徑作半圓C,P是半圓C上的一個動點(P與點A,O不重合),AP的延長線交半圓O于點D。
(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接PC,當∠ACP=600時,求弧AD的長;
(3)過點D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.
(1)AP=PD,理由見解析; (2) ;(3).
【解析】
試題分析:(1)AP=PD.理由如下:如圖①,連接OP.利用圓周角定理知OP⊥AD.然后由等腰三角形“三合一”的性質(zhì)證得AP=PD;
(2)由三角形中位線的定義證得CP是△AOD的中位線,則PC∥DO,所以根據(jù)平行線的性質(zhì)易求弧AD所對的圓心角∠AOD=60°,從而求出弧AD的長;
(3)分類討論:點E落在線段OA和線段OB上,這兩種情況下的y與x的關(guān)系式.這兩種情況都是根據(jù)相似三角形(△APO∽△AED)的對應(yīng)邊成比例來求y與x之間的函數(shù)關(guān)系式.
試題解析:(1)AP=PD. 理由如下:
如圖①,連接OP,OD,
∵OA是半圓C的直徑,∴∠APO=90°,即OP⊥AD.
又∵OA=OD,∴AP=PD.
(2)如圖①,連接PC、OD.由(1)知,AP=PD.
又∵AC=OC,∴PC∥OD. ∴∠AOD=∠ACP=60°.
∵AB=8,∴OA=4.∴弧AD的長=.
(3)分兩種情況:
①當點E落在OA上(即0<x≤時),如圖②,連接OP,則∠APO=∠AED.
又∵∠A=∠A,∴△APO∽△AED.∴.
∵AP=x,AO=4,AD=2x,AE=4﹣y,∴.∴(0<x≤).
②當點E落在線段OB上(即<x<4)時,如圖③,
連接OP,同①可得,△APO∽△AED.∴.
∵AP=x,AO=4,AD=2x,AE=4+y,∴ .∴(<x<4).
綜上所述,y與x之間的函數(shù)關(guān)系式為.
考點:1.單動點問題;2.圓周角定理;3.等腰三角形的性質(zhì);4.三角形中位線定理;5.平行線的性質(zhì);6.弧長的計算;7.由實際問題列函數(shù)關(guān)系式;8.相似三角形的判定和性質(zhì);9.分類思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
16 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
40 |
3 |
40 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com