如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC
邊上一點(diǎn)(不與B,C重合),過點(diǎn)P作∠APE=∠B,PE交CD 于E。
(1)求證:△APB∽△PEC;(2)若CE=3,求BP的長(zhǎng)。(習(xí)題改編)
解:(1)證明:梯形ABCD中,∵AD∥BC,AB=DC
∴∠B=∠C=60°
∵∠APC=∠B+∠BAP
即∠APE+∠EPC=∠B+∠BAP
∵∠APE=∠B
∴∠BAP=∠EPC
∴△APB∽△PEC
(2)過點(diǎn)A作AF∥CD交BC于F
則四邊形ADCF為平行四邊形,△ABC為等邊三角形
∴CF=AD=3,AB=BF=7-3=4
∵△APB∽△PEC,
∴=
設(shè)BP=x,則PC=7-x,又EC=3, AB=4
∴=
整理,得x2-7x+12=0
解得 x1=3, x2=4
經(jīng)檢驗(yàn), x1=3, x2=4是所列方程的根
∴BP的長(zhǎng)為3或4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
利用表格中的數(shù)據(jù),可求出+(4.123)2-的近似值是(結(jié)果保留整數(shù)).
A.3 | B.4 |
C.5 | D.6 |
a | a2 |
|
|
17 | 289 | 4.123 | 13.038 |
18 | 324 | 4.243 | 13.416 |
19 | 361 | 4.359 | 13.784 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,梯形中,AD∥BC,,AB=AD=6,BC=9,以為圓心在梯形內(nèi)畫出一個(gè)最大的扇形(圖中陰影部分)的面積是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個(gè)不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有2個(gè),黑球有1個(gè),綠球有3個(gè),第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,則兩次摸到的都是紅球的概率為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
五一期間,某電器商城推出了兩種促銷方式,且每次購(gòu)買電器時(shí)只能使用其中一種方式:第一種是打折優(yōu)惠,凡是在該商城購(gòu)買家用電器的客戶均可享受八折優(yōu)惠;第二種方式是:贈(zèng)送優(yōu)惠券,凡在商城三天內(nèi)購(gòu)買家用電器的金額滿400元且少于600元的,贈(zèng)優(yōu)惠券100元;不少于600元的,所贈(zèng)優(yōu)惠劵是購(gòu)買電器金額的,另再送50元現(xiàn)金
(1)以上兩種促銷方式中第二種方式,可用如下形式表達(dá):設(shè)購(gòu)買電器的金額為x(x≥400)元,優(yōu)惠券金額為y元,則:①當(dāng)x=500時(shí),y= ;②當(dāng)x≥600時(shí),y= ;
(2)如果小張想一次性購(gòu)買原價(jià)為x(400≤x<600)元的電器,可以使用優(yōu)惠劵,在上面的兩種促銷方式中,試通過計(jì)算幫他確定一種比較合算的方式?
(3)如果小張?jiān)诖黉N期間內(nèi)在此商城先后兩次購(gòu)買電器時(shí)都得到了優(yōu)惠券(兩次購(gòu)買均未使用優(yōu)惠券),第一次購(gòu)買金額在600元以內(nèi),第二次購(gòu)買金額超過600元,所得優(yōu)惠券金額累計(jì)達(dá)800元,設(shè)他購(gòu)買電器的金額為W元,W至少應(yīng)為多少?(W=支付金額-所送現(xiàn)金金額)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com