【題目】如圖,海上救援船要從距離海岸8海里的點位置到海岸的處攜帶救援設(shè)備,然后到距離海岸16海里處的點處對故障船實施救援.已知間的距離為18海里,為使救援船盡快趕到故障船實施救援,救援設(shè)備被放置在恰當(dāng)位置.
(1)試在圖中確定點的位置;
(2)若救援船的速度是20節(jié)(1節(jié)=1海里/小時),求這艘救援船最快多長時間到達故障船?
【答案】(1)見解析;(2)1.5
【解析】
(1)利用“直線同側(cè)兩點到直線上一點距離的和最短的問題”模型,利用軸對稱的知識,確定M的位置.
(2)補全圖形,利用勾股定理,得到EC的長,從而得到到達所用時間.
解:(1)延長AB至E,使BE=AB,連接EC交BD于M,連接AM,則點M即為所求.
(2)依題意有AB=8,CD=16,BD=18,
根據(jù)(1)的作圖可知,點A,E關(guān)于直線BD對稱,
∴AB=BE=8,AM=EM,
過點E作EFBD,交CD的延長線與F,
∵四邊形BEFD為矩形,
∴EF=BD=18,AB=BE=DF=8,
∴CF=CD+DF=16+8=24,
在ECF中,,
∴AM+MC=EM+MC=EC=30,
又∵救援船的速度是20節(jié),即為20×1=20(海里/小時),
∵(小時).
∴這艘救援船最快到達故障船的時間為1.5小時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,DO⊥AB于點O,連接DA交⊙O于點C,過點C作⊙O的切線交DO于點E,連接BC交DO于點F.
(1)求證:CE=EF;
(2)連接AF并延長,交⊙O于點G.填空:
①當(dāng)∠D的度數(shù)為 時,四邊形ECFG為菱形;
②當(dāng)∠D的度數(shù)為 時,四邊形ECOG為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個小長方形的邊長為1,所求的圖形各頂點也在格點上.
(1)在圖1中畫一個以點,為頂點的菱形(不是正方形),并求菱形周長;
(2)在圖2中畫一個以點為所畫的平行四邊形對角線交點,且面積為6,求此平行四邊形周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E,若BF=6,AB=5,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蓮城超市以10元/件的價格調(diào)進一批商品,根據(jù)前期銷售情況,每天銷售量y(件)與該商品定價x(元)是一次函數(shù)關(guān)系,如圖所示.
(1)求銷售量y與定價x之間的函數(shù)關(guān)系式;
(2)如果超市將該商品的銷售價定為13元/件,不考慮其它因素,求超市每天銷售這種商品所獲得的利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點是邊上一個動點,過點作直線,設(shè)交的平分線于點,交的外角平分線于點.
(1)探究與的數(shù)量關(guān)系并加以證明;
(2)當(dāng)點運動到上的什么位置時,四邊形是矩形,請說明理由;
(3)在(2)的基礎(chǔ)上,滿足什么條件時,四邊形是正方形?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com