已知拋物線y=+bx+c過原點,對稱軸為x=2,頂點為A;一個正比例函數(shù)y=kx的圖象也過A點,且與x軸及拋物線的對稱軸圍成一個面積為3的直角三角形。

1.求A點坐標(biāo)。

2.求這兩個函數(shù)的解析式。

答案:
解析:

1.(2,3)或(2,-3);2.當(dāng)頂點為(2,3)時,直線是 y=x,拋物線是y=-+3x;當(dāng)頂點為A(2,-3)時,直線是y=-x,拋物線是y=-3x


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c交x軸于A、B兩點,點A在y軸左側(cè),該圖象對稱軸為x=-1,最高點的縱坐標(biāo)為4,且|OA|=2-
1a

(1)求此二次函數(shù)的解析式;
(2)若點M在x軸上方的拋物線上,且S△MAB=6,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點M(4,0),以點M為圓心、2為半徑的圓與x軸交于點A、B,已知拋物線y=
1
6
x2+bx+c
過點A和B,與y軸交于點C.
(1)求點C的坐標(biāo),并畫出拋物線的大致圖象;
(2)求出拋物線的頂點D的坐標(biāo),并確定與圓M的位置關(guān)系;
(3)點Q(8,m)在拋物線y=
1
6
x2+bx+c
上,點P為此拋物線對稱軸上一個動點,求PQ+PB的最小值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c(a>0)的對稱軸為x=-1,交x軸的一個交點為(x1,0),且0<x1<1,則下列結(jié)論:
①b>0,c<0;②a-b+c>0;③b<a;④3a+c>0;⑤9a-3b+c>0
其中正確的命題有
 
.(請?zhí)钊胝_的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南沙區(qū)一模)如圖1,已知拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=2OA=4.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)設(shè)P是(1)中拋物線上的一個動點,以P為圓心,R為半徑作⊙P,求當(dāng)⊙P與拋物線的對稱軸l及x軸均相切時點P的坐標(biāo).
(3)動點E從點A出發(fā),以每秒1個單位長度的速度向終點B運動,動點F從點B出發(fā),以每秒
2
個單位長度的速度向終點C運動,過點E作EG∥y軸,交AC于點G(如圖2).若E、F兩點同時出發(fā),運動時間為t.則當(dāng)t為何值時,△EFG的面積是△ABC的面積的
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半⊙O′與y軸正半軸交于點C,連接BC,AC.CD是半⊙O′的切線,AD⊥CD于點D.
(1)求證:∠CAD=∠CAB;
(2)已知拋物線y=ax2+bx+c過A、B、C三點,AB=10,tan∠CAD=
12

①求拋物線的解析式;
②判斷拋物線的頂點E是否在直線CD上,并說明理由;
③在拋物線上是否存在一點P,使四邊形PBCA是直角梯形?若存在,直接寫出點P的坐標(biāo)(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案