【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣6mx+5與y軸的交點(diǎn)為A,與x軸的正半軸分別交于點(diǎn)B(b,0),C(c,0).
(1)當(dāng)b=1時(shí),求拋物線相應(yīng)的函數(shù)表達(dá)式;
(2)當(dāng)b=1時(shí),如圖,E(t,0)是線段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)E作平行于y軸的直線l與拋物線的交點(diǎn)為P.求△APC面積的最大值;
(3)當(dāng)c=b+n時(shí),且n為正整數(shù),線段BC(包括端點(diǎn))上有且只有五個(gè)點(diǎn)的橫坐標(biāo)是整數(shù),求b的值.
【答案】
(1)
解:當(dāng)b=1時(shí),將點(diǎn)B(1,0)代入拋物線y=x2﹣6mx+5中,得m=1,
∴y=x2﹣6x+5
(2)
解:如圖1中,直線AC與PE交于點(diǎn)F.
當(dāng)b=1時(shí),求得A(0,5),B(1,0),C(5,0),可得AC所在的一次函數(shù)表達(dá)式為y=﹣x+5,
∵E(t,0),
∴P (t,t2﹣6t+5),直線l與AC的交點(diǎn)為F(t,﹣t+5),
∴PF=(﹣t+5)﹣(t2﹣6t+5)=﹣t2+5t,
∴S△APC= ×(﹣t2+5t)5=﹣ (t﹣ )2+ ,
∵﹣ <0,
∴當(dāng)t= 時(shí),面積S有最大值
(3)
解:①當(dāng)b整數(shù)時(shí),n為整數(shù),
∴n=4,c=b+4.則b,b+4是方程x2﹣mx+5=0的兩個(gè)根,分別代入方程中,
得b2﹣mb+5=0 ①,(b+4)2﹣m(b+4)+5=0 ②,
由①②可得b2+4b﹣5=0,解得b=1或﹣5(舍);
或由一元二次方程根與系數(shù)的關(guān)系得 b(b+4)=5解得b=1或﹣5(舍).
②當(dāng)b小數(shù)時(shí),n為整數(shù),∴n=5,c=b+5為小數(shù),則b,b+5是方程x2﹣mx+5=0的兩個(gè)根,同樣可得b= 或 (舍棄);
∴b=1或
【解析】(1)當(dāng)b=1時(shí),將點(diǎn)B(1,0)代入拋物線y=x2﹣6mx+5中求出m,即可解決問(wèn)題.(2)如圖1中,直線AC與PE交于點(diǎn)F.切線直線AC的解析式,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題.(3)分兩種情形①當(dāng)b整數(shù)時(shí),n為整數(shù),可知n=4,c=b+4.則b,b+4是方程x2﹣mx+5=0的兩個(gè)根,分別代入方程中求解即可,②當(dāng)b小數(shù)時(shí),n為整數(shù),∴n=5,c=b+5為小數(shù),則b,b+5是方程x2﹣6x+5=0的兩個(gè)根,
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式成立的是( )
A. 6÷(3×2)=6÷3×2 B. 3÷(-2)=3÷-2
C. (-12÷3)×5=-12÷3×5 D. 5-3×(-4)=2×(-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個(gè),若從中任意摸出一個(gè)球是白球的概率是 .
(1)求暗箱中紅球的個(gè)數(shù).
(2)先從暗箱中任意摸出一個(gè)球記下顏色后放回,再?gòu)陌迪渲腥我饷鲆粋(gè)球,求兩次摸到的球顏色不同的概率(用樹(shù)形圖或列表法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測(cè)試,各項(xiàng)成績(jī)?nèi)缦拢▎挝唬悍郑?
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | |
學(xué)生甲 | 90 | 93 | 89 | 90 |
學(xué)生乙 | 94 | 92 | 94 | 86 |
(1)分別計(jì)算甲、乙成績(jī)的中位數(shù);
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績(jī)按3:3:2:2計(jì)算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績(jī)分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門就“你某天在校體育活動(dòng)時(shí)間是多少”的問(wèn)題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問(wèn)題:
(1)此次抽查的學(xué)生數(shù)為人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)從抽查的學(xué)生中隨機(jī)詢問(wèn)一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是;
(3)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把 個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得 , , ,計(jì)算 , ……按此規(guī)律,寫出 (用含 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù) ( )與反比例函數(shù) ( )的圖象交于點(diǎn) , .
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)在 軸上是否存在點(diǎn) ,使 為等腰三角形?若存在,求 的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)a,b,定義min{a,b}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.
例如:min{1,-2}=-2 ,min{-3,-3}=-3.
(1)填空:min{-1,-4}= ;min{, }= ;
(2)求min{,0};
(3)已知min{-2k +5,-1}=-l,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB=4,AE平分∠BAD交邊BC于點(diǎn)E,∠AEC的分線交AD于點(diǎn)F,以點(diǎn)D為圓心,DF為半徑畫圓弧交邊CD于點(diǎn)G,求弧FG的長(zhǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com