如圖,正方形ABCD是⊙O的內接正方形,點P在劣弧上不同于點C得到任意一點,則∠BPC的度數(shù)是    度.
【答案】分析:連接OB,OC,由正方形的性質知,△BOC是等腰直角三角形,有∠BOC=90°,由圓周角定理可以求出.
解答:解:連接OB,OC,如圖所示:
∵四邊形ABCD為正方形,∴∠BOC=90°,
∴∠P=∠BOC=45°.
故答案為:45.
點評:本題利用了正方形的性質,等腰直角三角形的性質及圓周角定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案