【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+b與坐標(biāo)軸交于C,D兩點,直線AB與坐標(biāo)軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).
(1)求點A,C的坐標(biāo);
(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經(jīng)過點E,求k的值;
(3)在(2)的條件下,點M在直線CD上,坐標(biāo)平面內(nèi)是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標(biāo);若不存在,請說明理由.
【答案】(1)A(﹣2,0),C(1,0);(2)k=﹣2;(3)存在,點N的坐標(biāo)為(﹣,4+)、(,4﹣)或(,).
【解析】分析:(1)利用分解因式法解一元二次方程x-3x+2=0即可得出OA、OC的值,再根據(jù)點所在的位置即可得出A、C的坐標(biāo);(2)根據(jù)點C的坐標(biāo)利用待定系數(shù)法即可求出直線CD的解析式,根據(jù)點A、B的橫坐標(biāo)結(jié)合點E為線段AB的中點即可得出點E的橫坐標(biāo),將其代入直線CD的解析式中即可求出點E的坐標(biāo),再利用待定系數(shù)法即可求出k值;(3)假設(shè)存在,設(shè)點M的坐標(biāo)為(m,-m+1),分別以BE為邊、BE為對角線來考慮,根據(jù)菱形的性質(zhì)找出關(guān)于m的方程,解方程即可得出點M的坐標(biāo),再結(jié)合點B、E的坐標(biāo)即可得出點N的坐標(biāo).
本題解析:(1)x2﹣3x+2=(x﹣1)(x﹣2)=0,
∴x1=1,x2=2,
∵OA>OC,
∴OA=2,OC=1,
∴A(﹣2,0),C(1,0).
(2)將C(1,0)代入y=﹣x+b中,
得:0=﹣1+b,解得:b=1,
∴直線CD的解析式為y=﹣x+1.
∵點E為線段AB的中點,A(﹣2,0),B的橫坐標(biāo)為0,
∴點E的橫坐標(biāo)為﹣1.
∵點E為直線CD上一點,
∴E(﹣1,2).
將點E(﹣1,2)代入y= (k≠0)中,
得:2=,解得:k=﹣2.
3.假設(shè)存在,
設(shè)點M的坐標(biāo)為(m,﹣m+1),
以點B,E,M,N為頂點的四邊形是菱形分兩種情況(如圖所示):
①以線段BE為邊時,∵E(﹣1,2),A(﹣2,0),E為線段AB的中點,
∴B(0,4),
∴BE=AB= .
∵四邊形BEMN為菱形,
∴EM= =BE=,
解得:m1=,m2=
∴M(,2+)或(,2﹣),
∵B(0,4),E(﹣1,2),
∴N(﹣,4+)或(,4﹣);
②以線段BE為對角線時,MB=ME,
∴,
解得:m3=﹣ ,
∴M(﹣, ),
∵B(0,4),E(﹣1,2),
∴N(0﹣1+,4+2﹣),即( , ).
綜上可得:坐標(biāo)平面內(nèi)存在點N,使以點B,E,M,N為頂點的四邊形是菱形,點N的坐標(biāo)為(﹣,4+)、(,4﹣)或( , ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計,當(dāng)每輛車的月租金為3000元時,可全部租出.每輛車的月租金每增加50元時,未租出的車將會增加1輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?
(2)當(dāng)每輛車的租金定為多少元時,租賃公司的月收益(租金收入扣除維護(hù)費(fèi))可達(dá)到306600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水庫大壩截面的迎水坡坡比(DE與AE的長度之比)為1:0.6,背水坡坡比為1:2,大壩高DE=30米,壩頂寬CD=10米,求大壩的截面的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某地實驗測得的數(shù)據(jù)表明,高度每增加1km,氣溫大約下降3℃,已知該地地面溫度為21℃.
(1)高空某處高度是6km,求此處的溫度是多少;
(2)高空某處溫度為﹣24℃,求此處的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
求證:(1)BD是⊙O的切線;(2)CE2=EH·EA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,H為BE上的一點, =3,連接CH并延長交AB于點G,連接GE并延長交AD的延長線于點F.
(1)求證: ;
(2)若∠CGF=90°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店一天中賣出某種品牌的運(yùn)動鞋15雙,它們的尺碼與銷售量如表所示:
鞋的尺碼/cm | 23 | 23.5 | 24 | 24.5 | 25 |
銷售量/雙 | 2 | 3 | 3 | 5 | 2 |
則這15雙鞋的尺碼組成的數(shù)據(jù)中,中位數(shù)為( 。
A.23.5cmB.24cmC.24.5cmD.25cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com