【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標(biāo)注數(shù)字3)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB的角平分線OC上一點,分別連接AP、BP,若再添加一個條件即可判定△AOP≌△BPO,則一下條件中:①∠A=∠B;②∠APO=∠BPO;③∠APC=∠BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)
備選體育用品 | 籃球 | 排球 | 羽毛球拍 |
單價(元) | 50 | 40 | 25 |
(1)若400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?
(2)若400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?(若能實現(xiàn)直接寫出一種答案即可,若不能請說明理由.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明發(fā)現(xiàn),過點E作EF∥DC,交BC延長線于點F,構(gòu)造△BEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:BC+DE的值為________
參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點G,AC=BF=DF,求∠AGF的度數(shù)________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王周末騎電單車從家出發(fā)去商場買東西,當(dāng)他騎了一段路時,想起要買一本書,于是原路返回到剛經(jīng)過的新華書店,買到書店后繼續(xù)前往商場,如圖是他離家的距離與時間的關(guān)系 示意圖,請根據(jù)圖中提供的信息回答下列問題:
(1)小王從家到新華書店的路程是多少米?
(2)小王在新華書店停留了多少分鐘?
(3)買到書店,小王從新華書店到商場的汽車速度是多少米/分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,長方形 ABCD 中,AB=3cm,BC=6cm,P 為矩形 ABCD 上的動點,動點 P 從 A 出發(fā),沿著 A-B-C-D 運動到 D 點停止,速度為 1cm/s,設(shè)點 P 運動時間為 x 秒,△APD 的面積為 ycm.
(1)填空:①當(dāng) x=6 時,對應(yīng) y 的值為________;9≤x<12 時,y 與 x 之間的關(guān)系式為_____;
(2)當(dāng) y=3 時,求 x 的值;
(3)當(dāng) P 在線段 BC 上運動時,是否存在點 P 使得△APD 的周長最?若存在,求出此時∠APD 的度數(shù);若不存在,請說明理由.
圖1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明家和學(xué)校所在地的簡單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點C為OP的中點,回答下列問題:
(1)圖中距小明家距離相同的是哪些地方?
(2)學(xué)校、商場和停車場分別在小明家的什么方位?
(3)如果學(xué)校距離小明家400m,那么商場和停車場分別距離小明家多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個新的三位數(shù),我們稱這個三位數(shù)為M的“友誼數(shù)”,如:168的“友誼數(shù)”為“618”;若從M的百位數(shù)字、十位數(shù)字、個位數(shù)字中任選兩個組成一個新的兩位數(shù),并將得到的所有兩位數(shù)求和,我們稱這個和為M的“團(tuán)結(jié)數(shù)”,如:123的“團(tuán)結(jié)數(shù)”為12+13+21+23+31+32=132.
(1)求證:M與其“友誼數(shù)”的差能被15整除;
(2)若一個三位正整數(shù)N,其百位數(shù)字為2,十位數(shù)字為a、個位數(shù)字為b,且各位數(shù)字互不相等(a≠0,b≠0),若N的“團(tuán)結(jié)數(shù)”與N之差為24,求N的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊三角板的直角頂點重合.
(1)寫出以點C為頂點的相等的角;
(2)若∠ACB=150°,求∠DCE的度數(shù);
(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com