如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線A1C和OB1交于點(diǎn)M1,以M1A1為對(duì)角線作第二個(gè)正方形A2A1B2M1,對(duì)角線A1M1和A2B2交于點(diǎn)M2;以M2A1為對(duì)角線作第三個(gè)正方形A3A1B3M2,對(duì)角線A1M2和A3B3交于點(diǎn)M3;…,依此類推,那么M1的坐標(biāo)為______;這樣作的第n個(gè)正方形的對(duì)角線交點(diǎn)Mn的坐標(biāo)為______.
因?yàn)檎叫蔚倪呴L(zhǎng)為1,
則正方形四個(gè)頂點(diǎn)坐標(biāo)為O(0,0),C(0,1),B1(1,1),A1(1,0),
在正方形OA1B1C中,
∴OM1=M1A1,∠OM1A1=90°,
設(shè)OM1=M1A1=x,
由勾股定理得:x2+x2=12,
解得:x=
2
2

同理可求出OA2=A2M1=
1
2
,A2M2=
2
4
,A2A3=
1
4
,…,
根據(jù)正方形對(duì)角線性質(zhì)可得:M1的坐標(biāo)為(1-
1
2
,
1
2
),
故答案為:(
1
2
,
1
2
);
同理得M2的坐標(biāo)為(1-
1
22
,
1
22
),
M3的坐標(biāo)為( 1-
1
23
,
1
23
),
…,
依此類推:Mn坐標(biāo)為( 1-
1
2n
,
1
2n
)=(
2n-1
2n
,
1
2n
)
,
故答案為:(1-
1
2n
,
1
2n
)
或另一書寫形式(
2n-1
2n
1
2n
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為m,△BPC是等邊三角形,則△CDP的面積為______(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD,E是BC中點(diǎn),∠AEF=90°,∠1=∠2
(1)線段AE與EF的數(shù)量關(guān)系為______
(2)在線段BC上,若E不是BC中點(diǎn),上述關(guān)系是否成立?若成立,加以證明;若不成立,說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)圖1中,若G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:如圖2,在直角梯形ABCD中,ADBC(BC>AD),∠B=90°,AB=BC=6,E是AB上一點(diǎn),且∠DCE=45°,BE=2,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD中,E、F分別在邊AD,AB上,且AE=BF=
1
3
AB,EF與AC交于點(diǎn)P.
(1)求EF:AE的值;
(2)設(shè)AB=x,四邊形BCPF的面積為y,求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,邊長(zhǎng)為6的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為S1,S2,則S1+S2的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將邊長(zhǎng)為an(n=1,2,3,…)的正方形紙片從左到右順次擺放,其對(duì)應(yīng)的正方形的中心依次為A1,A2,A3,…,且后一個(gè)正方形的頂點(diǎn)在前一個(gè)正方形的中心,若第n個(gè)正方形紙片被第n+1個(gè)正方形紙片蓋住部分的邊長(zhǎng)(即虛線的長(zhǎng)度)記為bn,已知a1=1,an-an-1=2,則b1+b2+b3+…+bn=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖.邊長(zhǎng)為1的兩個(gè)正方形互相重合,按住其中一個(gè)不動(dòng),將另一個(gè)繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,則這兩個(gè)正方形重疊部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
①試說明OE=OF;
②若點(diǎn)E在AC的延長(zhǎng)線上,AG⊥BE,交EB延長(zhǎng)線于點(diǎn)G,AG的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)F,若其他條件不變,請(qǐng)作圖,結(jié)論OE=OF仍成立嗎?請(qǐng)說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案