如圖,△ABC中,點D、E、F分別在三邊上,E是AC的中點,AD、BE、CF交于一點G,BD=2DC,S△GEC=3,S△GDC=4,則△ABC的面積是________.

30
分析:由于BD=2DC,那么結(jié)合三角形面積公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中點,故有S△AGE=S△CGE,于是可求S△ACD,從而易求S△ABC
解答:解:∵BD=2DC,
∴S△ABD=2S△ACD,
∴S△ABC=3S△ACD
∵E是AC的中點,
∴S△AGE=S△CGE,
又∵S△GEC=3,S△GDC=4,
∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,
∴S△ABC=3S△ACD=3×10=30.
故答案為:30.
點評:本題考查了三角形的面積公式、三角形之間的面積加減計算.注意同底等高的三角形面積相等,面積相等、同高的三角形底相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,△ABC中,點D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對相似三角形?請選擇一對進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D、E分別為AB、AC的中點,連接DE,線段BE、CD相交于點O,若OD=2,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D為BC上一點,且AB=AC=CD,則圖中∠1和∠2的關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D為AB邊上的一點,點F為BC延長線上一點,DF交AC于點E.下列結(jié)論中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D在BC上,點E在AB上,BD=BE,下列四個條件中,不能使△ADB≌△CEB的條件是(  )

查看答案和解析>>

同步練習冊答案