已知:四邊形ABCD為圓內接矩形,過點D作圓的切線DP,交BA的延長線于點P,且PD=15,PA=9.
(1)求AD與AB的長;
(2)如果點E為PD的一個動點(不與運動至P,D),過點E作直線EF,交PB于點F,并將四邊形PBCD的周長平分,記△PEF的面積為y,PE的長為x,請求出y關于x的函數(shù)關系式;
(3)如果點E為折線DCB上一個動點(不與運動至D,B),過點E作直線EF交PB于點F,試猜想直精英家教網線EF能否將四邊形PBCD的周長和面積同時平分?若能,請求出BF的長.若不能,請說明理由.
分析:(1)由四邊形是圓內接矩形可知,∠PAD=90°.根據勾股定理便可求出AD的長.
因為PD是⊙O的切線,所以根據切線的性質和直徑所對的圓周角是90°構造直角三角形,應用三角函數(shù)即可求出AD與AB的長;
(2)因為PE=x,所以根據EN=PE•sin∠P=
4
5
x.建立起EN和x之間的關系,利用三角形的面積公式求出y關于x的函數(shù)關系式;
(3)過O作直線EF,利用矩形的性質,S△ODE=S△OBF,S△BCD=S△ABD,可推出直線EF所割矩形PBCD面積相等.
由△ODE≌△OBF可得DE=BF,又因為AD=BC,AB=CD,所以可計算出直線EF所割矩形ABCD周長相等.
解答:精英家教網解:(1)連接BD.(如圖1)
∵四邊形ABCD是矩形,
∴AD⊥PB.
∴∠PAD=∠BAD=90°.△PAD與△ABD都是直角三角形.
∵PD=15,PA=9,
∴AD=12.
∵DP切⊙O于D,
∴BD⊥DP.
∴∠PDB=90°.
∵∠P+∠ADP=∠ADP+∠ADB=90°,
∴∠P=∠ADB.
∵tan∠P=
AD
AP
=
12
9
=
4
3

∴tan∠ADB=
AB
AD
=
4
3

∴AB=AD•tan∠ADB=
12×4
3
=16;

(2)(如圖2)
∵過點E作直線EF,交PB于點F,并將四邊形PBCD的周長平分,
AB=16,AD=12,
∴四邊形PBCD的周長為:15+16+12+16+9=68,精英家教網
∴PE+PF=34,
∵PE=x,
∴PF=34-x,
EN=PE•sin∠P=
4
5
x.
設S△PEF=y,
∴y=
1
2
EN•PF=
1
2
×
4
5
x•(34-x)=-
2
5
x2+
68
5
x(0<x<15);

(3)答:不可以.
證明:在折線DCB上任取一點E,連接EO并延長交AB于F.(如圖3)
∵四邊形ABCD是矩形,精英家教網
∴AB∥CD.
∴∠ODE=∠OBF.
∵OD=OB=r,∠DOE=∠FOB,
∴△ODE≌△OBF.
∴S△ODE=S△OBF
∴S梯形ADEF=S四邊形ADOF+S△ODE=S四邊形ADOF+S△OBF=S△ABD
同理,S梯形BCEF=S△BCD
∵S△BCD=S△ABD
∴直線EF所割矩形PBCD面積相等.
由△ODE≌△OBF可得DE=BF.
∴DE+AD+AF=BF+AD+AF=AD+AB,精英家教網
BF+BC+CE=DE+BC+CE=BC+CD.
∵AD=BC,AB=CD,
∴直線EF所割矩形PBCD周長相等.
∵這樣的E點無數(shù)
而直線F″E″不能平分三角形DPA的周長和面積,
∴不存在BF(如圖4).
點評:此題不僅考查了求圓的弦長等基礎知識,還考查了利用面積建立函數(shù)關系式、探索與圓相關的四邊形的周長和面積的等量關系等內容,有一定的開放性,旨在考查同學們的探索發(fā)現(xiàn)能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:如果四邊形中一對頂點到另一對頂點所連對角線的距離相等,則把這對頂點叫做這個四邊形的一對等高點.例如:如圖1,平行四邊形ABCD中,可證點A、C到BD的距離相等,所以點A、C是平行四邊形ABCD的一對等高點,同理可知點B、D也是平行四邊形ABCD的一對等高點.
(1)如圖2,已知平行四邊形ABCD,請你在圖2中畫出一個只有一對等高點的四邊形ABCE(要求:畫出必要的輔助線);
(2)已知P是四邊形ABCD對角線BD上任意一點(不與B、D點重合),請分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當四邊形ABCD只有一對等高點A、C時,你得到的一個結論是
 
;
②如圖4,當四邊形ABCD沒有等高點時,你得到的一個結論是
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長和菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點E,AF⊥DC的延長線于點F,已知平行四邊形ABCD的周長為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知在四邊形ABCD中,AC與BD相交于點O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD,E是邊AB的中點,聯(lián)結AC、DE交于點O.記向量
AB
=
a
,
AD
=
b
,則向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
、
b
表示).

查看答案和解析>>

同步練習冊答案