(2008•蘭州)已知關(guān)于x的一元二次方程x2-2x-a=0.
(1)如果此方程有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍;
(2)如果此方程的兩個(gè)實(shí)數(shù)根為x1,x2,且滿足,求a的值.
【答案】分析:(1)方程有兩個(gè)不相等的實(shí)數(shù)根,必須滿足△=b2-4ac>0,從而求出a的取值范圍.
(2)利用根與系數(shù)的關(guān)系,根據(jù)+=即可得到關(guān)于a的方程,從而求得a的值.
解答:解:(1)△=(-2)2-4×1×(-a)=4+4a.
∵方程有兩個(gè)不相等的實(shí)數(shù)根,
∴△>0.即4+4a>0
解得a>-1.

(2)由題意得:x1+x2=2,x1•x2=-a.

,

∴a=3.
點(diǎn)評(píng):本題綜合考查了一元二次方程的根的判別式和根與系數(shù)的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2008•蘭州)已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)是2.
(1)求兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)若點(diǎn)A(x1,y1),B(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2,試比較y1,y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前知識(shí)點(diǎn)回歸+鞏固 專題12 反比例函數(shù)(解析版) 題型:解答題

(2008•蘭州)已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)是2.
(1)求兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)若點(diǎn)A(x1,y1),B(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2,試比較y1,y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省汕頭市潮陽(yáng)區(qū)中考模擬數(shù)學(xué)試卷(張浩 陳亮)(解析版) 題型:解答題

(2008•蘭州)已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)是2.
(1)求兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)若點(diǎn)A(x1,y1),B(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2,試比較y1,y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•蘭州)已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)是2.
(1)求兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)若點(diǎn)A(x1,y1),B(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2,試比較y1,y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣東省肇慶市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•蘭州)已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)是2.
(1)求兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)若點(diǎn)A(x1,y1),B(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2,試比較y1,y2的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案