【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

【答案】解:在直角三角形ACO中,sin75°= ≈0.97,
解得OC≈38.8,
在直角三角形BCO中,tan30°= =
解得BC≈67.3.
答:該臺(tái)燈照亮水平面的寬度BC大約是67.3cm
【解析】根據(jù)sin75°= = ,求出OC的長(zhǎng),根據(jù)tan30°= ,再求出BC的長(zhǎng),即可求解.此題主要考查了解直角三角形的應(yīng)用,熟練應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把函數(shù)y=x的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.
類似地,我們可以認(rèn)識(shí)其他函數(shù).

(1) 把函數(shù)y= 的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,橫坐標(biāo)不變,得到函數(shù)y= 的圖象;也可以把函數(shù)y= 的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)y= 的圖象.
(2)已知下列變化:①向下平移2個(gè)單位長(zhǎng)度;②向右平移1個(gè)單位長(zhǎng)度;③向右平移 個(gè)單位長(zhǎng)度;④縱坐標(biāo)變?yōu)樵瓉?lái)的4倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變.
(Ⅰ)函數(shù)y=x2的圖象上所有的點(diǎn)經(jīng)過(guò)④→②→①,得到函數(shù)的圖象;
(Ⅱ)為了得到函數(shù)y=﹣ (x﹣1)2﹣2的圖象,可以把函數(shù)y=﹣x2的圖象上所有的點(diǎn)
A.①→⑤→③B.①→⑥→③C.①→②→⑥D(zhuǎn).①→③→⑥
(3)函數(shù)y= 的圖象可以經(jīng)過(guò)怎樣的變化得到函數(shù)y=﹣ 的圖象?(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)﹣旋轉(zhuǎn)變換

(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓.
①猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
②連接A′B,求線段A′B的長(zhǎng)度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓,問(wèn):角α與角β滿足什么條件時(shí),直線BB′與⊙A′相切,請(qǐng)說(shuō)明理由,并求此條件下線段A′B的長(zhǎng)度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】測(cè)量計(jì)算是日常生活中常見(jiàn)的問(wèn)題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測(cè)旗桿頂點(diǎn)A的仰角為50°,觀測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y= (k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的有( )
①面積之比為1:2的兩個(gè)相似三角形的周長(zhǎng)之比是1:4;②三視圖相同的幾何體是正方形;③-27沒(méi)有立方根;④對(duì)角線互相垂直的四邊形是菱形;⑤某中學(xué)人數(shù)相等的甲、乙兩班學(xué)生參加了同一次數(shù)學(xué)測(cè)驗(yàn),班平均分和方差分別為 =82分, =82分, =245, =190,那么成績(jī)較為整齊的是乙班,
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了進(jìn)一步開(kāi)展“陽(yáng)光體育”活動(dòng),計(jì)劃用2000元購(gòu)買乒乓球拍,用2800元購(gòu)買羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購(gòu)買的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠CAB的平分線分別交BD,BC于點(diǎn)E,F(xiàn),作BH⊥AF于點(diǎn)H,分別交AC,CD于點(diǎn)G,P,連接GE,GF.

(1)求證:△OAE≌△OBG;
(2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由;
(3)試求: 的值(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案