如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=3.
(1)在AB邊上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求點(diǎn)D,E的坐標(biāo);
(2)若過(guò)點(diǎn)D,E的拋物線與x軸相交于點(diǎn)F(-5,0),求拋物線的解析式和對(duì)稱(chēng)軸方程;
(3)若(2)中的拋物線與y軸交于點(diǎn)H,在拋物線上是否存在點(diǎn)P,使△PFH的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)若(2)中的拋物線與y軸相交于點(diǎn)H,點(diǎn)Q在線段OD上移動(dòng),作直線HQ,當(dāng)點(diǎn)Q移動(dòng)到什么位置時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大?請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo)及直線HQ的解析式.

【答案】分析:(1)本題可根據(jù)折疊的性質(zhì)來(lái)求解.根據(jù)折疊的性質(zhì)可得出OE=OA,可在直角三角形OCE中,用勾股定理求出CE的長(zhǎng),也就求出了E點(diǎn)的坐標(biāo).在直角三角形DBE中,還是根據(jù)折疊的性質(zhì),DA=DE,DB=3-DE,而B(niǎo)E可根據(jù)OA和CE的長(zhǎng)求出,因此根據(jù)勾股定理即可求出DE即AD的長(zhǎng),也就得出了D點(diǎn)的坐標(biāo).
(2)根據(jù)D、E、F的坐標(biāo),用待定系數(shù)法即可求出拋物線的解析式,進(jìn)而可求出其對(duì)稱(chēng)軸的方程.
(3)當(dāng)內(nèi)心在y軸上時(shí),根據(jù)三角形內(nèi)心的性質(zhì)可知:y軸正好是∠PHF的角平分線,那么∠PHO=∠FHO=45°,設(shè)PH與x軸的交點(diǎn)為M,易知三角形OMH為等腰直角三角形,由此可求出M的坐標(biāo),進(jìn)而可求出直線PH的解析式,聯(lián)立拋物線的解析式即可求出P點(diǎn)的坐標(biāo).
當(dāng)內(nèi)心在x軸上時(shí),解法同上.
(4)根據(jù)“直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短”可知,當(dāng)直線HQ⊥OD時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大,此時(shí)點(diǎn)Q為垂足.利用三角形相似可求得點(diǎn)Q的坐標(biāo).
解答:解:(1)依題意,OE=OA=5,
在Rt△OCE中,CE2=OE2-OC2=52-32=42,
∴CE=4.
設(shè)點(diǎn)D的坐標(biāo)為(5,y),
則AD=DE=y,BD=3-y,BE=5-4=1.
在Rt△BED中,ED2=EB2+BD2,
∴y2=12+(3-y)2,
解得y=
∴點(diǎn)D,E的坐標(biāo)分別為(5,),(4,3).

(2)設(shè)拋物線的解析式為y=ax2+bx+c,
∵拋物線過(guò)點(diǎn)D(5,),E(4,3),F(xiàn)(-5,0),
,
解得,
∴拋物線的解析式為y=-x2+x+5.
對(duì)稱(chēng)軸的方程為
∴對(duì)稱(chēng)軸的方程為x=

(3)存在這樣的P點(diǎn),使△PFH的內(nèi)心在坐標(biāo)軸上.
①若△PFH的內(nèi)心在y軸上,設(shè)直線PH與x軸相交于點(diǎn)M,
∵∠FHO=∠MHO,HO⊥FM,
∴FO=MO,
∴點(diǎn)M的坐標(biāo)為(5,0).
∴直線PH的解析式為y=-x+5.
解方程組
,
∴點(diǎn)P的坐標(biāo)為(7,-2).
②若△PFH的內(nèi)心在x軸上,設(shè)直線PF與y軸相交于點(diǎn)N,
∵∠HFO=∠NFO,F(xiàn)O⊥HN,
∴HO=NO,
∴點(diǎn)N的坐標(biāo)為(0,-5),
∴直線FN的解析式為y=-x-5.
解方程組,


∴點(diǎn)P的坐標(biāo)為(12,-17).
綜合①②可知點(diǎn)P的坐標(biāo)為(7,-2)或(12,-17).

(4)(附加題)點(diǎn)Q的坐標(biāo)為(,),
直線HQ的解析式為y=-3x+5.
點(diǎn)評(píng):本題為二次函數(shù)綜合題,綜合考查了矩形的性質(zhì)、圖形的折疊變換、三角形的內(nèi)心等重要知識(shí).難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=9,OC=15,將矩形紙片OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到矩形OA1B1C1.將矩形OA1B1C1折疊,使得點(diǎn)B1落在x軸上,并與x軸上的點(diǎn)B2重合,折痕為A1D.
(1)求點(diǎn)B2的坐標(biāo);
(2)求折痕A1D所在直線的解析式;
(3)在x軸上是否存在點(diǎn)P,使得∠BPB1為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA、OC是方程
2
x
=
9-x
10
的兩個(gè)根(OA>OC),在AB邊上取一點(diǎn)D,將紙片沿CD翻折,使點(diǎn)B恰好落在OA邊上的點(diǎn)E處.
(1)求OA、OC的長(zhǎng);
(2)求D、E兩點(diǎn)的坐標(biāo);
(3)若線段CE上有一動(dòng)點(diǎn)P自C點(diǎn)沿CE方向向E點(diǎn)勻速運(yùn)動(dòng)(點(diǎn)P運(yùn)動(dòng)到點(diǎn)E后停止運(yùn)動(dòng)),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,過(guò)P點(diǎn)作ED的平行線交CD于點(diǎn)M.是否存在這樣的t 值,使以C、E、M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫(xiě)出t值及相應(yīng)的時(shí)刻點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的長(zhǎng)方形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,
(1)求過(guò)E點(diǎn)的反比例函數(shù)解析式;
(2)求折痕AD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處.
(1)求過(guò)E點(diǎn)的反比例函數(shù)解析式.
(2)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案