【題目】若關(guān)于x的一元二次方程kx2+4x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是

【答案】k>﹣2且k≠0
【解析】解:根據(jù)題意得k≠0且△=42﹣4k(﹣2)>0,

所以k>﹣2且k≠0.

所以答案是k>﹣2且k≠0.

【考點精析】掌握求根公式是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是高,AE是角平分線,∠B=20°,∠C=60°.

(1)求∠CAD、∠AEC和∠EAD的度數(shù).

(2)若圖形發(fā)生了變化,已知的兩個角度數(shù)改為:當(dāng)∠B=30°,∠C=60°則∠EAD= °;

當(dāng)∠B=50°,∠C=60°時,則∠EAD= °;

當(dāng)∠B=60°,∠C=60°時,則∠EAD= °;

當(dāng)∠B=70°,∠C=60°時,則∠EAD= °.

(3)若∠B和∠C的度數(shù)改為用字母α和β來表示,你能找到∠EAD與α和β之間的關(guān)系嗎?請直接寫出你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P(﹣3,5)到y(tǒng)軸的距離是( 。

A. 3 B. ﹣3 C. 5 D. ﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人體內(nèi)某種細(xì)胞的形狀可近似看做球狀,它的直徑是0.00000156m,這個數(shù)據(jù)用科學(xué)記數(shù)法可表示為( )
A.1.56×106m
B.1.56×105m
C.156×105m
D.1.56×106m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標(biāo)原點,與x軸交于點A(﹣4,0).

(1)求二次函數(shù)的解析式;

(2)在拋物線上存在點P,滿足SAOP=8,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB的長為10,弦AC的長為5,ACB的平分線交O于點D.

1)求弧BC的長;

2)求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個正多邊形的一個外角是45°,則這個正多邊形的邊數(shù)是( )
A.10
B.9
C.8
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中正確的是( )

A. 2x+3y=5xy B. x·x4=x4 C. x8÷x2=x4 D. (x2y)3=x6y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為一種新型電子產(chǎn)品在該城市的特約經(jīng)銷商,已知每件產(chǎn)品的進(jìn)價為40元,該公司每年銷售這種產(chǎn)品的其他開支(不含進(jìn)貨價)總計100萬元,在銷售過程中得知,年銷售量y(萬件)與銷售單價x(元)之間存在如表所示的函數(shù)關(guān)系,并且發(fā)現(xiàn)y是x的一次函數(shù).

銷售單價x(元)

50

60

70

80

銷售數(shù)量y(萬件)

5.5

5

4.5

4

(1)求y與x的函數(shù)關(guān)系式;

(2)問:當(dāng)銷售單價x為何值時,該公司年利潤最大?并求出這個最大值;

【備注:年利潤=年銷售額﹣總進(jìn)貨價﹣其他開支】

(3)若公司希望年利潤不低于60萬元,請你幫助該公司確定銷售單價的范圍.

查看答案和解析>>

同步練習(xí)冊答案