【題目】如圖,直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是2.
(1)求反比例函數(shù)的解析式.
(2)將直線沿x軸向右平移6個(gè)單位后,與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C.動(dòng)點(diǎn)P在y軸正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PC之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1);(2)P(0,6)
【解析】試題分析:(1)先求得點(diǎn)A的坐標(biāo),再利用待定系數(shù)法求得反比例函數(shù)的解析式即可;(2)連接AC,根據(jù)三角形兩邊之差小于第三邊知:當(dāng)A、C、P不共線時(shí),PA-PC<AC;當(dāng)A、C、P不共線時(shí),PA-PC=AC;因此,當(dāng)點(diǎn)P在直線AC與y軸的交點(diǎn)時(shí),PA-PC取得最大值.先求得平移后直線的解析式,再求得平移后直線與反比例函數(shù)的圖象的交點(diǎn)坐標(biāo),最后求直線AC的解析式,即可求得點(diǎn)P的坐標(biāo).
試題解析:
令一次函數(shù)中,則,
解得:,即點(diǎn)A的坐標(biāo)為(-4,2).
∵點(diǎn)A(-4,2)在反比例函數(shù)的圖象上,
∴k=-4×2=-8,
∴反比例函數(shù)的表達(dá)式為.
連接AC,根據(jù)三角形兩邊之差小于第三邊知:當(dāng)A、C、P不共線時(shí),PA-PC<AC;當(dāng)A、C、P不共線時(shí),PA-PC=AC;因此,當(dāng)點(diǎn)P在直線AC與y軸的交點(diǎn)時(shí),PA-PC取得最大值.
設(shè)平移后直線于x軸交于點(diǎn)F,則F(6,0)
設(shè)平移后的直線解析式為,
將F(6,0)代入得:b=3
∴直線CF解析式:
令3=,解得:,
∴C(-2,4)
∵A、C兩點(diǎn)坐標(biāo)分別為A(-4,2)、C(-2,4)
∴直線AC的表達(dá)式為,
此時(shí),P點(diǎn)坐標(biāo)為P(0,6).
點(diǎn)睛:本題是一次函數(shù)與反比例函數(shù)的綜合題,主要考查了用待定系數(shù)法求函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的交點(diǎn)坐標(biāo),熟練運(yùn)用一次函數(shù)及反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABF和ADE,連接EB.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),以邊AB、AD為斜邊分別向外側(cè)作等腰直角三角形ABF和ADE,連接EB、FD,線段EB和FD的數(shù)量關(guān)系是 .
(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),以邊AB、AD為斜邊分別向內(nèi)側(cè)作等腰直角三角形ABF和ADE,連接EF、BD,線段EF和BD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;
(3)當(dāng)四邊形ABCD為平行四邊形時(shí)(如圖3),以邊AB、AD為斜邊分別向平行四邊形內(nèi)測(cè)、外側(cè)作等腰直角三角形ABF和ADE,且△EAD與△FBA的頂角都為α,連接EF、BD,交點(diǎn)為G,請(qǐng)用α表示出∠EGD,并說(shuō)明理由.
圖1 圖2 圖3
【答案】(1)EF=BD;(2)EF=BD;(3)
【解析】分析:(1)正方形的性質(zhì)、等邊三角形的性質(zhì)和全等三角形的證明方法可證明△AFD≌△ABE,由全等三角形的性質(zhì)即可得到EB=FD;(2)根據(jù)等腰直角三角形的性質(zhì)可得,再證得∠BAD=∠FAE,即可判定△BAD∽△FAE ,根據(jù)相似三角形的性質(zhì)可得,即可得;(3),先證△BFA∽△DEA,即可得,
再證得,所以△BAD∽△FAE,根據(jù)全等三角形的性質(zhì)即可得,再由∠AHE=∠DHG,即可得.
詳解:(1)EF=BD,
理由如下:
四邊形ABCD為正方形,
∴AB=AD,
∵以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中, ,
∴△AFD≌△ABE,
∴EB=FD;
(2)EF=BD.
證明:∵△AFB為等腰直角三角形
∴,∠FAB=45°
同理: ,∠EAD=45° ∴∠BAD+∠FAD=∠EAD+∠DAF
即∠BAD=∠FAE
∵, ∴
∴△BAD∽△FAE ∴
即:
(3)解:
∵△AFB為等腰直角三角形,∴FB=FA,
同理:ED=EA,∴,
又∵ ,∴△BFA∽△DEA,
∴,
∴,
∴,
∴△BAD∽△FAE,
∴,
又∵∠AHE=∠DHG,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向上,圖象經(jīng)過(guò)點(diǎn)(﹣1,2)和(1,0),且與y軸交于負(fù)半軸,給出六個(gè)結(jié)論:①a>0;②b>0;③c>0;④a+b+c=0;⑤b2﹣4ac>0;⑥2a﹣b>0,其中正確結(jié)論序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到△AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問(wèn)△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C三點(diǎn)在數(shù)軸上的位置如圖所示,它們表示的數(shù)分別是a、b、c
(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)
(2) 若|a|=2,且點(diǎn)B到點(diǎn)A、C的距離相等
① 當(dāng)b2=16時(shí),求c的值
② 求b、c之間的數(shù)量關(guān)系
③ P是數(shù)軸上B,C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)設(shè)點(diǎn)P表示的數(shù)為x.當(dāng)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,bx+cx+|x-c|-10|x+a|的值保持不變,求b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是 的直徑,CD與 相切于C, .
(1)求證:BC 是的平分線.
(2)若DC=8, 的半徑OA=6,求CE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)4.8
【解析】分析:(1)由,推出,由,推出,可得.(2)在中,求出OD,由,可得,由此即可解決問(wèn)題.
詳解:(1)證明:因?yàn)?/span>,
所以,
又因?yàn)?/span>,
所以,
故可得,
即可得是的平分線.
(2)因?yàn)?/span>DE是的切線,
所以,即在中,DC=8,OC=OA=6,所以,
又因?yàn)?/span>,
所以,
所以,
即可得EC=4.8
點(diǎn)睛:本題主要考查了切線的性質(zhì)及相似三角形的應(yīng)用,題目難度適中,會(huì)綜合運(yùn)用所考查的知識(shí)點(diǎn)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】“食品安全”受到全社會(huì)的廣泛關(guān)注,濟(jì)南市某中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩份尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題.
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_____.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
(4)若從對(duì)食品安全知識(shí)達(dá)到“了解”程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過(guò)重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此我市教育部門對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近8000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人去南方批發(fā)茶葉,在某地A批發(fā)市場(chǎng)以每包m元的價(jià)格進(jìn)了40包茶葉,又到B批發(fā)市場(chǎng)時(shí)發(fā)現(xiàn)同樣的茶葉比A批發(fā)市場(chǎng)要便宜,每包的價(jià)格僅為n元,因此他又在B批發(fā)市場(chǎng)進(jìn)了60包同樣的茶葉.如果他銷售時(shí)以每包元的價(jià)格全部賣出這批茶葉,那么在不考慮其它因素的情況下他的這次買賣( 。
A.一定盈利B.一定虧損
C.不盈不虧D.盈虧不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點(diǎn)都在菱形的邊上.設(shè)AE=AH=x(0<x<1),矩形的面積為S.
(1)求S關(guān)于x的函數(shù)解析式;
(2)當(dāng)EFGH是正方形時(shí),求S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
【利潤(rùn)=(銷售價(jià)-進(jìn)價(jià))銷售量】
(1)請(qǐng)根據(jù)他們的對(duì)話填寫下表:
銷售單價(jià)x(元/kg) | 10 | 11 | 13 |
銷售量y(kg) |
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com